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Abstract 

This study proposes “reflexive crowdedness” as a mechanism through which order flow can 

become toxic at ultra-high frequencies (UHFs). We show that crowdedness, a coordination 

problem that arises from the inability of traders to accurately gauge competition, leads to 

significant mispricing in UHFs in the form of liquidity costs. This mispricing propagates 

through (reflexive) feedback loops between liquidity variations and price components and can 

accumulate rapidly when high-speed traders engage. We develop an empirical framework to 

examine this mechanism in UHF trading. Empirical results on trades of Dow 30 stocks show 

that reflexive crowdedness triggers speculative algorithmic trading and is a key driver of order 

flow toxicity and market instability at high frequencies. Further, we develop a new UHF 

measure of crowdedness and find it predicts various UHF phenomena, including flash crashes 

and spikes, more reliably than price volatility and the Volume Synchronised Probability of 

Informed Trading (VPIN). We propose important recommendations for investors, market 

operators, and regulators.  
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1. Introduction 

We propose a mechanism we call “reflexive crowdedness” through which order flow becomes 

increasingly toxic at ultra-high frequencies (UHFs). This mechanism combines crowdedness, 

a coordination problem that arises when traders cannot accurately gauge competition, and 

reflexivity, a price dynamic based on feedback loops. A trader identifying an arbitrage 

opportunity cannot condition trading on competition due to uncertainty about the number of 

competitors and their capacity to conduct arbitrage. Consequently, this trader might transact at 

prices that overshoot or undershoot their fundamental values. We hypothesise that mispricing 

from this coordination problem (crowdedness) induces noise in trading signals that triggers 

speculative trading. This noise can propagate through feedback loops between arbitrage 

capacity and the information and liquidity costs that other traders estimate from trading signals. 

These feedback loops (reflexivity) fuel further speculative trading that accumulates rapidly at 

UHFs due to high-speed opportunistic algorithmic traders (algos).3 These conditions can nudge 

the market into a self-propagating liquidity state, or “liquidity spiral,” requiring intervention or 

substantial price movements to restore equilibrium. Thus, reflexive crowdedness can render 

order flow toxic, causing traders to unknowingly provide liquidity at a loss. In this paper, we 

introduce an empirical framework to investigate this mechanism in UHFs, demonstrating that 

it can lead to various UHF extreme phenomena, including flash crashes and spikes. 

Short-lived, extreme price events are increasingly common at UHFs. Johnson et al. (2013) 

documented 18,520 such events from 2006 to 2011, and our analysis found 1,472 similar events 

in Dow 30 stocks in 2019. Although the causes are debated, algos are often implicated due to 

 
3 At UHFs, speed becomes the “token of information” (O'Hara, 2015). The literature recognises two types of 

algos: agency and opportunistic (Hagströmer and Nordén, 2013; Li et al., 2021). Agency algos engage in market 

making as liquidity providers, facilitating trading and diffusing information by interacting with informed agents 

such as fund managers (Hendershott et al., 2015). Opportunistic algos are liquidity takers who rely on speed and 

engage in UHF strategies, such as low-latency arbitrage, directional speculation, and one-side market making 

(O'Hara, 2015; Boehmer et al., 2018). Both types extract price-relevant information from entropic trading signals 

and, in a sense, free ride on fundamental information (Yadav, 2015). 
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trading at speeds that outpace human attention.4 However, speed alone may not drive these 

events. Algos can support market liquidity (e.g., Linton et al., 2011; Hasbrouck and Saar, 2013; 

Brogaard et al., 2014), but their reliance on speed and liquidity-related information rather than 

firm fundamentals (O'Hara, 2015) means they can both supply and deplete liquidity quickly 

(Yao and Ye, 2018). Thus, liquidity bouts may coincide with increased algo presence. 

However, in efficient markets, mere liquidity bouts should not lead to the significant decline 

in market quality seen in extreme events (Johnson et al., 2013). Breckenfelder (2024) shows 

that speculative trading rises and market quality declines when high-frequency traders compete 

rather than when their numbers increase. This suggests that while algo presence and speed 

matter, they may not be the main drivers of speculative competition during extreme events. 

The implication is that the overreliance of algos on speed and non-fundamental information 

may induce noise in trading signals that fuels speculative competition. Yet, the literature does 

not explain why or when competition in UHFs becomes speculative, leading to extreme events. 

We argue that extreme events stem from toxic order flow that turns competition speculative. 

This motivates our focus on crowdedness as the mechanism that renders order flow toxic. Our 

analysis shows that crowdedness from uncertainty in arbitrage capacity imposes significant 

liquidity costs, causing liquidity suppliers to unknowingly provide liquidity at a loss. Thus, 

crowdedness can drive the toxicity of order flow that triggers speculative competition.  

The reflexivity aspect of our mechanism is motived by the fact that while crowdedness can 

cause persistent mispricing (Stein, 2009), it may be insufficient to trigger extreme price events 

at UHFs. The zero-profit condition of efficient markets implies a balance between overreaction 

and underreaction (Fama, 1998). However, UHF extreme events involve rapid, sustained 

mispricing in one direction, often requiring intervention like circuit breakers or spikes in the 

 
4 The U.S. Commodity Futures Trading Commission (CFTC) and the U.S Securities and Exchange Commission 

(SEC) (2010) report on the 6 May 2010 flash crash, for example, reinforces this perspective by noting that “prices 

were moving so fast, fundamental traders and arbitrageurs were either unable or unwilling to supply enough [buy-

side] liquidity” (p. 4). Although the report suggests speed as the main factor, it left it unclear how the speed of 

trading rendered traders unable or unwilling to supply liquidity during the crash. 
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bid-ask spread. Algos may explain the speed (Li et al., 2021), but sustained mispricing suggests 

a clustering mechanism. If reflexive loops feed the noise from crowded trading signals into 

prices, then clusters may form in order flow toxicity, leading to liquidity spirals. We develop a 

microstructure pricing model where information and liquidity price components vary with 

expected arbitrage capacity, modelled as an autoregressive moving average (ARMA) process. 

Formulating arbitrage capacity as the product of this ARMA process and random noise captures 

both persistence and clustering. This results in an asymmetric information price component 

positively affected by persistence in arbitrage capacity (liquidity) and a liquidity price 

component negatively affected by this persistence. These opposing loops allow the model to 

capture market conditions dominated by either information concerns (normal trading) or 

liquidity fears (extreme events). Thus, reflexivity can account for the rapid onset of liquidity 

spirals leading to extreme price movements like flash crashes or spikes.5   

The concept of crowdedness was first explored in the asset pricing literature. Stein (2009), 

for example, considers two types of agents: “newswatchers” who underreact to information 

and arbitrageurs who attempt to profit from this underreaction. Through simulations, Stein 

shows that uncertainty in the number of arbitrageurs can lead to persistent mispricing in long-

term strategies unanchored to fundamentals, such as momentum strategies and carry trades. 

Abreu and Brunnermeier (2003) investigate a similar effect from traders’ inability to 

synchronise their trades due to uncertainty in the timing of trades. Our framework goes beyond 

these and other related asset pricing studies in several ways. First, unlike most asset pricing 

literature focusing on arbitrages across assets or maturities, our framework deals with 

 
5 This reflexivity mechanism is distinctly different from the liquidity spirals of Brunnermeier and Pederson (2009) 

that relate to trader funding constraints and the magnifying effect of leverage with no funding constraints studied 

in Stein (2009), among others. Brunnermeier and Pedersen (2009) propose two liquidity spirals. A margin spiral 

emerges if traders’ margins are increasing in illiquidity, and a loss spiral arises if speculators hold large initial 

positions that are negatively correlated with customer demand shocks. A funding shock decreases market liquidity, 

leading to higher margins (margin spiral) and speculator losses on their initial positions forcing more sales and 

price drops (loss spiral). By contrast, our framework neither assumes funding constraints nor leverage. 

Magnification occurs through sequential clustering of mispricing arising from uncertainty in arbitrage capacity. 
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sequential information arbitrage in the same asset. Second, while Stein (2009) and others 

consider two types of agents, we model competitive interactions among three types: informed, 

uninformed, and discretionary liquidity traders (Kyle, 1985; Admati and Pfleiderer, 1988), with 

algos as a subset of discretionary liquidity traders. Third, our study is the first to model arbitrage 

capacity holistically in three dimensions: the number of each agent type, their capital, and the 

speed at which they can apply it. This accounts for both the intensity and capacity (capital and 

speed) of agent types to compete for arbitrage opportunities. Fourth, unlike Stein (2009) who 

considers random fundamentals, we model evolving fundamentals conditioned on noisy order 

flow and expected arbitrage capacity, accounting for changing private information and 

interactions between liquidity (arbitrage capacity) and information costs. Fifth, our empirical 

framework is not confined to simple long-term strategies that are unanchored to fundamentals, 

as in Stein (2009), but considers every trade as a potential arbitrage opportunity. This requires 

a new trade-by-trade measure of crowdedness which we develop in this paper. 

Our study also relates to the microstructure literature where mispricing is typically 

attributed to liquidity costs, information costs, or speculative trading. For instance, Chordia 

and Subrahmanyam (2004) focus on liquidity factors like autocorrelated order imbalances from 

large order splitting and market maker inventory constraints. Conversely, Sarkar and Schwartz 

(2009) attribute mispricing to asymmetric information among agents, leading to one-sided 

trading, and differential information due to heterogeneous beliefs, leading to two-sided trading. 

Additionally, Tkatch and Kandel (2004) explore the interaction between information and 

liquidity in causing shifts in demands for immediacy. Finally, Breckenfelder (2024) finds 

market quality deteriorates when high-frequency traders trade speculatively. This literature 

acknowledges the price impact of information and liquidity-related effects. However, there is 

no study on crowdedness and mispricing at UHF. Existing models do not capture crowdedness 

at UHFs, being either theoretical with frictionless market assumptions or empirical but focused 

on lower frequencies. Prior theoretical approaches use partial equilibrium models, limited 
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sequential information models, or pricing that does not fully account for all trading costs or 

changes in fundamentals. Empirical approaches are limited by their adaptation to lower-

frequency trading issues, such as calendar or discrete time, experimental market setups, and 

simple long-term trading strategies or two-agent classification. They do not explain what 

triggers the accumulation of speculative competitiveness among UHF traders and the toxicity 

of order flow at certain times. Our mechanism addresses these issues directly. 

Our approach goes beyond the previous literature in several ways. First, it employs a 

pricing mechanism enforcing a zero-profit equilibrium condition, with violations reflected as 

liquidity costs. To extract these costs, we need a trade indicator model tailored to UHFs. We 

enhance Madhavan et al.’s (1997) asymmetric information microstructure model in three 

ways.6 The first enhancement allows agent responses to information and liquidity costs to vary 

with expected arbitrage capacity. Thus, price formation is designed to be regret-free of expected 

arbitrage capacity, in addition to the standard microstructure factors of private information, 

public information, liquidity costs, and price discreteness. The second enhancement is the 

identification of agent types by modelling arrival rates as point processes, inferring three 

distinct agent types from trading intensities or hazard functions of their volume interactions 

with the market (Ibrahim and Kalaitzoglou, 2016). The third enhancement accounts for 

differential information in trade size (volume) and speed (duration).7 Mispricing is then 

calculated by filtering out the effect of evolving fundamentals from price changes. Thus, our 

mispricing measure focuses solely on liquidity costs, providing a more relevant metric of order 

flow toxicity than price volatility or Easley et al.’s (2011a, b) VPIN, which use total price 

changes. Second, besides accounting for all three dimensions of arbitrage capacity and three 

types of rational competitive agents, our model considers both asymmetric and differential 

information (Sarkar and Schwartz, 2009) as competition drivers. Third, the model accounts for 

 
6 See Madhavan (2000) for a review of trade indicator models. 
7 Madhavan et al.’s (1997) model ignores this information by assuming equally spaced trades of unit size. 
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the autocorrelation in returns and volatility often linked to market inefficiencies or behavioural 

biases like herding. These autocorrelations are induced by the persistence in the ARMA process 

assumed for expected arbitrage capacity. Finally, the model incorporates reflexivity and 

changing fundamentals by dynamically updating agent responses to new information and 

changes in liquidity costs on a trade-by-trade basis, thereby operating in event time rather than 

calendar time. Our estimation results show significant clustering in arbitrage capacity that 

identifies three distinct agents and coupled with the reflexive loops differentially affects their 

responses to information and liquidity costs.  In such a dynamic, regret-free setup with rational 

agents, the prior literature predicts the disappearance of the crowdedness effect (see Stein, 

2009). Thus, our framework is more holistic, rigorous, and appropriate than previous studies 

for examining crowdedness in UHFs, constituting our first contribution to the literature.  

Our second contribution is the empirical evidence of crowdedness in UHFs. In efficient 

markets, mispricing should average symmetrically around zero (Fama, 1998). However, our 

analysis shows that mispricing and mispricing risk in Dow 30 trades increase asymmetrically 

with the size of surprise in arbitrage capacity (SAC), especially during faster-than-expected 

trading or for low-liquidity stocks. Additionally, on good news days, mispricing is greater in 

slow trading conditions. These asymmetries confirm the presence of crowdedness in UHF 

trading, even when using an elaborate pricing model to estimate mispricing. 

Our third contribution is twofold. We introduce a new UHF measure of trade crowdedness 

based on the rate of mispricing per unit of SAC and assess its predictive power on several UHF 

phenomena. These phenomena include extreme price events, sudden demands for immediacy 

(impatience), price runs (herding or behavioural biases), sudden increases in the bid-ask spread 

and price volatility, and the intensity of algorithmic and institutional trading. First, we evaluate 

whether crowdedness in individual trades predicts these phenomena over different time 

horizons. Second, we compare the predictive power of an interval-based version of our measure 

with that of price volatility and VPIN for UHF extreme price events. The results show that 
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crowdedness significantly predicts these phenomena up to 150 transactions ahead, acts as a 

trigger to speculative algo trading, and is a stronger and more stable predictor of flash crashes 

and spikes than VPIN and price volatility. This provides an ex-ante measure of order flow 

toxicity and the market’s propensity to enter a liquidity spiral. 

In the remainder of this paper, Section 2 develops our pricing model and mispricing 

measure, Section 3 presents the data, Section 4 analyses crowdedness and its predictive power 

on UHF phenomena using a new measure of crowdedness, Section 5 discusses implications of 

the results on investors, operators, and regulators, and Section 6 concludes. 

 

2. Structural pricing and a mispricing measure  

Consider a risky security with an evolving fundamental value �̃�𝑖, which trades through a 

trading mechanism where bid-ask quote setting is ex-post rational. We extend Madhavan et 

al.’s (1997) pricing model to incorporate variations in expected liquidity of the next trade in 

both the traders’ revisions in beliefs about fundamental value and the impact of liquidity costs 

on the change in prices. The revision in beliefs (∆𝜇𝑖) and the change in price (Δ𝑝𝑖) from trade 

i-1 to trade i are: 

 𝜇𝑖 − 𝜇𝑖−1 ≡ ∆𝜇𝑖 = 𝜃𝑖(𝑞𝑖 − 𝐸[𝑞𝑖|𝑞𝑖−1]) + 𝜀𝑖 , (1) 

 𝑝𝑖 − 𝑝𝑖−1 ≡ ∆𝑝𝑖 = ∆𝜇𝑖 + 𝛥𝜑𝑖𝑞𝑖 + 𝛥𝜉𝑖 =  𝜃𝑖(𝑞𝑖 − 𝜌𝑞𝑖−1) + 𝛥𝜑𝑖𝑞𝑖 + 𝜀𝑖 + 𝛥𝜉𝑖, (2) 

where 𝜇𝑖 ≡ 𝐸[�̃�𝑖|𝐻𝑖] is the post-trade expectation of the fundamental value �̃�𝑖 of the risky 

security at event/trade time i given the available information set 𝐻𝑖; 𝑞𝑖 is an order flow variable 

that takes a value of +1 (-1) if trade i is buyer (seller) initiated, and is assumed to follow a 

simple Markov process with 𝜌 being its first order autocorrelation; the term (𝑞𝑖 − 𝐸[𝑞𝑖|𝑞𝑖−1]), 

where 𝐸[𝑞𝑖|𝑞𝑖−1] = 𝜌𝑞𝑖−1, is the surprise in order flow, considered to be a noisy signal of 

private information; 𝜃𝑖 is a time-varying asymmetric information parameter, or the agent’s 

response to the private information indicated by the surprise in order flow; 𝜑𝑖 is a time-varying 



9 
 

agent’s price response to liquidity; 𝜑𝑖𝑞𝑖 is signed liquidity cost; 𝜀𝑖 is public information; and 

𝜉𝑖~𝑖𝑖𝑑(0) are errors due to time-varying returns or price discreteness.8 

Unlike Madhavan et al.’s (1997) model in which 𝜃 and 𝜑 are constants, this model 

differentiates the effects of anticipated and unanticipated arbitrage capacity by specifying the 

price responses to information and liquidity, 𝜃𝑖 and 𝜑𝑖, respectively, as functions of expected 

arbitrage capacity and the presence of each agent type according to the following dynamics: 

 𝜃𝑖 = 𝜃1 + (𝜃2
𝑢𝑛𝑖𝑛𝑓

𝐼𝑖
𝑢𝑛𝑖𝑛𝑓

+ 𝜃2
𝐷𝐿𝐼𝑖

𝐷𝐿 + 𝜃2
𝑖𝑛𝑓

𝐼𝑖
𝑖𝑛𝑓

)𝛩𝜄
−1, (3) 

 𝜑𝜄 = 𝜑1 + (𝜑2
𝑢𝑛𝑖𝑛𝑓

𝐼𝑖
𝑢𝑛𝑖𝑛𝑓

+ 𝜑2
𝐷𝐿𝐼𝑖

𝐷𝐿 + 𝜑2
𝑖𝑛𝑓

𝐼𝑖
𝑖𝑛𝑓

)𝛩𝜄
−1, (4) 

where 𝜃1, 𝜑1, 𝜃2
𝑙  and 𝜑2

𝑙 , 𝑙 = {uninformed, discretionary liquidity (DL), informed} are 

parameters to be estimated, 𝛩𝜄
−1 is the capital and timing of the arbitrage capacity that is 

expected to be applied to trade i, and 𝐼𝑖
𝑙 is a set of dummy variables that prospectively classifies 

trade 𝑖 as informed, DL, or uninformed. We next describe how 𝛩𝜄
−1 and 𝐼𝑖

𝑙 are determined. 

In an intraday context, we conjecture that two main dimensions of the arbitrage capacity 

applied by traders are primarily reflected in the size (volume) and timing (duration) of their 

trades. We consider the rate per unit time of the capital employed as a single measure that 

combines both the size and time dimensions of arbitrage capacity that is applied to a trade. This 

measure is the rate of transacted volume, or the ratio of trade volume to trade duration, 𝑣𝑖/𝑑𝑖. 

The reciprocal of this measure is volume-weighted duration, 𝑑𝑖/𝑣𝑖, or the time taken to trade 

one contract. First, we diurnally (seasonally) adjust the raw duration 𝑑𝑖 and call it 𝑥𝑖. We then 

transform 𝑥𝑖 into volume-weighted duration 𝑆𝑖 = 𝑥𝑖𝐾(𝑢𝑖) using the time deformation 

(stretching and compacting) factor 𝐾(𝑢𝑖) = 𝑒𝑥𝑝(−𝑢𝑖 
2⁄ ), where 𝑢𝑖 = (𝑣𝑖 − �̅�)/𝜎𝑣 is 

normalised volume. The volume-transformed variable, 𝑆𝑖, is our explicit measure of trading 

intensity, or the inverse of applied arbitrage capacity, defined as the waiting (deformed) time 

 
8 In Madhavan et al. (1997) the parameters 𝜃 and 𝜑  are constant and common across agents and trades. Hence, 

their model assumes a representative agent and ignores variations in liquidity and changing responses to 

information. It also ignores information in trade size and speed as it assumes equally spaced trades of unit volume. 
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that a single contract takes to be traded.9 Thus, by modelling trading intensity we 

simultaneously model the inverse of arbitrage capacity that is actually applied to trade i. 𝑆𝑖 is 

a mark(volume)-weighted temporal point process, and we model it by the following Smooth 

Transition Mixture of Weibull Autocorrelated Conditional Volume Weighted Duration (STM-

ACVWD) specification:  

 𝑆𝑖 = 𝛩𝑖𝜂𝑖 (5) 

 𝛩𝑖 = 𝜔 + ∑ 𝑎𝑗𝑆𝑖−𝑗
𝑚
𝑗=1 + ∑ 𝛽𝑝𝛩𝑖−𝑝

𝑞
𝑝=1   (6) 

where 𝛩𝑖 is the conditional expected trading intensity, or the reciprocal of anticipated arbitrage 

capacity that features in Equations (3) and (4); 𝜂𝑖 = 𝑆𝑖/𝛩𝑖 is unexpected trading intensity or 

the reciprocal of unanticipated arbitrage capacity that is applied to trade i; and 𝜔, 𝑎, 𝛽 are 

parameter coefficients. Note from Equation (5) that the arbitrage capacity 𝑆𝑖 applied to trade 𝑖 

is a noisy signal, with multiplicative noise, 𝜂𝑖, and Equations (5) and (6) describe how its 

signal-to-noise ratio is modelled. The conditional density function of the errors is assumed to 

be a smooth transition mixture of Weibull distributions in three regimes of trading intensity 

that identify the presence of uninformed, DL, and informed agents through variations in the 

hazard function of volume-weighted durations (Appendix B). A decreasing hazard indicates an 

acceleration of trading fuelled by the arrival of private information, which signals informed 

trading (resembling the “newswatchers” of Stein, 2009). An increasing hazard indicates an 

increasing probability of trading over time, which is consistent with the actions of arbitrageurs 

(trend chasers or discretionary liquidity traders) who need to extract an information signal first. 

Finally, a flat hazard indicates a continuation of the current level of liquidity that is in line with 

the assumed random rate of arrival of uninformed trading. The integral of the hazard function 

 
9 Note that this is a discrete measure of the instantaneous rate of transacted volume. It is a granular measure in the 

sense that it is a rate per unit of time, rather than an interval measure over a pre-specified ad-hoc interval of time 

(as PIN and VPIN are), and hence it avoids the uncertainty and controversy over volume bin determination in 

calculations of VPIN (see Andersen and Bondarenko, 2014a, b). Budish et al.’s (2023) suggestion of “Flow” or 

batch trading would regulate this trading intensity measure, and hence arbitrage capacity in the market.  
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over Δ𝑡 in each of these three cases provides the count of informed, DL, and uninformed 

traders: 𝐼𝑖
𝑖𝑛𝑓

, 𝐼𝑖
𝐷𝐿, and 𝐼𝑖

𝑢𝑛𝑖𝑛𝑓
 that feature in Equations (3) and (4) (see Section B4 in Appendix 

B). Consequently, 𝐼𝑖
𝑙 refers to the expected presence of each agent type in a way that is 

consistent with the anticipated number of each type of player in the market. This accounts for 

the third dimension of arbitrage capacity that relates to the intensity of the presence of agents. 

Equations (2) – (6) describe an advanced pricing model where quote setting and price 

formation satisfy zero-profit conditions, as all trading costs are accounted for through the full 

dissection of price changes. This price change is structured to be conditional on anticipated 

arbitrage capacity, the expected number of each of three types of players that may act on any 

arbitrage opportunity, the sign of the next trade, and public and private information.10 Further, 

the point process modelling of the arrival rate of volume shares features with Filimonov et al.’s 

(2015) modelling of Hawkes processes used to measure the degree of endogeneity in self-

exciting processes arising from feedback loops. In our model, the autocorrelation in Equation 

(6), which captures clustering in expected arbitrage capacity, is equivalent to a self-exciting 

Hawkes process and serves as the mechanism by which liquidity spirals can occur. The 

feedback loops (reflexivity) arise from two opposing liquidity effects: a positive effect in 𝜃𝑖 

and a negative effect in 𝜑𝜄, because higher liquidity increases information costs (𝜃𝑖) but 

decreases liquidity costs (𝜑𝜄). Furthermore, the model incorporates two noisy signals: private 

information and arbitrage capacity. Finally, it focuses on trades rather than orders but generates 

the best quotes that the market ought to set for the next trade. Hence, it imbeds regret-free 

estimates of the best bid and offer (BBO). These are limit orders, but their quotes are inferred 

from the model coefficients estimated from trade data. This approach has the advantage that 

the spread reflects the cost of “commitments” to trade, rather than contaminations from order 

 
10 Ibrahim and Kalaitzoglou (2016), who do not analyse overreaction and underreaction, report that a similar 

version of the model explains around 65% of the level of returns, 62% of the variance of returns, and 85% to 

nearly 100% of the GARCH effect in returns. It is, therefore, a reasonable contender for modelling price changes. 
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book manipulations such as those that can arise from order cancelations. Therefore, the focus 

is on trades rather than orders to capture the actual capital committed and applied to arbitrage 

opportunities. While we do not analyse order book depth beyond the BBO, our model considers 

both limit orders, through quote setting for the next trade, and market orders that resulted in 

previous trades, which are the limit orders that filled. 

Given the above setup, we can now provide a measure of overreaction and underreaction. 

A natural measure of mispricing in a multi-period setup is the degree to which revisions in 

prices (∆𝑝𝑖) deviate from revisions in beliefs (∆𝜇𝑖). From Equations (1) and (2), this is: 

  ∆𝑝𝑖 − ∆𝜇𝑖 = 𝛥𝜑𝑖𝑞𝑖 + 𝛥𝜉𝑖. (7) 

Conditional on the pricing model used, this is a function of changes in signed liquidity costs 

(𝛥𝜑𝑖𝑞𝑖) and in price discreteness (𝛥𝜉𝑖) since the previous trade, i – 1. Positive (negative) values 

for buy (sell) trades indicate overshooting or overreaction, and negative (positive) values for 

buy (sell) trades indicate undershooting or underreaction relative to revisions in fundamentals. 

Note that Equation (7) clearly indicates that changes in our model’s mispricing are primarily 

due to variations in liquidity costs driven by changes in anticipated arbitrage capacity (in 𝜑𝑖), 

which is the main cost relevant to liquidity traders. Importantly, this measure filters out the 

effect of evolving fundamentals (i.e., 𝜃𝑖(𝑞𝑖 − 𝐸[𝑞𝑖|𝑞𝑖−1]) + 𝜀𝑖), including their dynamic 

interaction with the liquidity or trading intensity expected for the next trade (through 𝜃𝑖).
11 

The unconditional mean of this mispricing measure is zero, which satisfies the equilibrium 

condition that, on average, prices reflect changes in beliefs due to private and public 

information, anticipated arbitrage capacity, the relative presence of players, signed liquidity 

costs, and price discreteness.12 Accordingly, as signed liquidity costs and price discreteness 

 
11 Note that 𝛥𝜉𝑖  in Equation (7) is dropped in calculations for two reasons. First, it represents changes in price 

discreteness from one transaction to the next and this is likely to be zero on average within SAC bins, especially 

for the Dow 30 stocks. Second, only the variance of 𝜉𝑖 can be estimated, which, being a constant, is safely excluded 

from tests of asymmetries of overreaction and underreaction based on averages over subsequent transactions. 
12 The unconditional variance is a function of 𝜙1, 𝜙2, the unconditional mean (constant), and the square of the 

ACVWD process, 𝛩. The conditional mean is time varying and is a function of 𝜙1, 𝜙2, 𝜌, 𝑞𝑖−1, 𝜉𝑖−1, and the 
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vary from one transaction to the next, overreaction or under-reaction too will vary as a function 

of changes in anticipated arbitrage capacity. However, if Equation (6) is an adequate 

description of expected trading intensity (in 𝜃𝑖 and 𝜑𝑖), and since 𝜉𝑖~𝑖𝑖𝑑(0), then overreaction 

or underreaction should be distributed symmetrically around the average of zero. Any 

mispricing arising from surprises in arbitrage capacity, therefore, should appear as liquidity 

cost effects distributed symmetrically around zero. Consequently, one should expect symmetry 

around zero in plots of the mispricing of Equation (7) against unexpected trading intensity 𝜂𝑖, 

which is also unanticipated arbitrage capacity (i.e., an impulse response function of Equation 

(7)). Thus, random unanticipated arbitrage capacity should have no bearing on average 

mispricing, which should be zero in an efficient (regret-free) market with an equilibrium 

adjusting mechanism. Henceforth, such plots, and associated tests, form the main tools of our 

investigation into the link between unanticipated arbitrage capacity and mispricing.  

Note that in a balanced and efficient market, other forms of symmetry should also be 

expected. In particular, the conditional mean of our mispricing measure is: 

 (𝜌 − 1)𝜑1𝑞𝑖−1 + ∑ 𝜑2
𝑙 𝐼𝑖

𝑙𝑞𝑖−1(𝜌𝛩𝑖 − 𝛩𝑖−1)𝑙 − 𝜉𝑖−1, (8) 

with time-varying elements: 𝑞𝑖−1, 𝜉𝑖−1, and the change in 𝛩 from i – 1 to i. Since this is a 

function of changes in (the inverse of) anticipated arbitrage capacity, the average overreaction 

given by the model should follow a roughly similar shape to the shock response function of the 

ACVWD model (see Fernandes and Grammig, 2006), and be symmetrically distributed across 

buy and sell transactions, since 𝑞𝑖−1 is equally likely to be +1 (buy) or -1 (sell).  

 Another symmetry that should be expected relates to realisations of the type of news. If 

good and bad news are equally likely, then mispricing should also be symmetric across news 

types. Finally, since unexpected trading intensity 𝜂 is i.d. with a mean of 1, and the shock 

response function of the ACVWD is symmetric across similarly sized realisations of 𝜂 around 

 
change in 𝛩 from i – 1 to i. The conditional variance is time varying and is a function of 𝜙1, 𝜙2, 𝜌, and the 

conditional mean and square of 𝛩, which contain the variance (risk) of unanticipated arbitrage capacity, 𝜎𝜂
2. 
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1, then mispricing should also be symmetric around 𝜂 = 1. Our tests of crowdedness in Section 

4.2 focus on detecting asymmetries in this impulse response function. 

Besides the level of mispricing, we also analyse mispricing risk, or the uncertainty in 

overreaction and underreaction. The conditional variance of our mispricing measure is  

 (1 − 𝜌2)[𝜑1
2 + 2𝝋𝟐𝜑1𝛩𝑖 + (𝝋𝟐𝛩𝑖)

2] + 𝜎𝜉𝑖

2 , (9) 

where 𝝋𝟐 = ∑ 𝜑2
𝑙 𝐼𝑖

𝑙
𝑙 , and the only time-varying element is the (inverse of) anticipated arbitrage 

capacity 𝛩𝑖. Hence, the conditional variance should also be symmetric around positive and 

negative realisations of unanticipated arbitrage capacity (𝜂) of equal magnitude. Thus, both the 

level and the uncertainty of mispricing should be symmetric across slower- and faster-than- 

anticipated market conditions (i.e., 𝜂 > 1 and 𝜂 < 1, respectively, which also are positive and 

negative shocks in applied arbitrage capacity). A final type of asymmetry that we consider can 

arise from liquidity variations across stocks. Accordingly, we also analyse stocks by liquidity. 

 

3. Data 

We consider all transactions and national best quote revisions on the constituent stocks of 

the Dow 30 index from 2 January 2019 to 6 December 2019 traded on the following exchanges: 

AMEX, ARCA, BATS, BATS Y, CSE, EDGA, EDGX, FINRA, IEX, NASDAQ, NSE, and 

NYSE. The data is provided by Algoseek and presented in detail in the online Appendix.  

We extract the time stamp in microseconds, the price in $, and the volume in number of 

contracts of each recorded transaction and national best quote revision. The trade initiation 

variable is constructed using the tick rule of Harris (1989).13 All observations outside the 

normal trading hours and the first transaction of each day, which aggregates the volume of the 

pre-opening auction, are omitted. Trades with identical time stamp, price, and direction are 

considered as one segmented trade and their volume is aggregated as if they were one trade. 

 
13 This is based on prices. Results using the alternative Ellis et al. (2000) tick rule are available upon request. 
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Duration is calculated as the time between consecutive trades in microseconds. We then add 1 

sec. to all observations for computational reasons and diurnally adjust duration as in Engle and 

Russell (1998) to filter out seasonality. Trades outside the 0.01st–99.99th percentiles of price 

change and the 99.99th percentile of volume are filtered out as outliers. These adjustments result 

in a panel dataset of 230,084,293 filtered transactions on 30 stocks over 236 days. Panel A of 

Table 1 presents descriptive statistics of the sample return (R=∆𝑝𝑖), volume (Q), and duration 

(D). Average return is near zero, average volume is 205.8 contracts, and average diurnally 

adjusted duration is 0.9 sec., but values vary considerably across stocks and range from -52.66 

to 52.65 cents for returns, 1 to 88,000 contracts for volume, and 0 to 4,500 sec. for duration. 

We further classify stocks by relative cross-sectional liquidity levels based on the total 

volume of trade. Stocks with a traded volume higher than the average across all stocks over the 

sample period are classified as High-Liquidity. The remaining stocks are classified as Low-

Liquidity. The column entitled “HLiq” in Table A.1 in the online Appendix A shows that this 

method results in 11 out of the 30 stocks being classified as relatively highly liquid. 

We also classify the trading days for each stock by the type of news into positive, no, and 

negative news days. This is initially conducted based on the distribution of trading imbalance. 

For each stock day, we calculate the daily volume trading imbalance as the difference between 

the daily buy volume and the daily sell volume. Next, we calculate the average of the absolute 

value of this imbalance over days for each stock. A stock day is classified as one of good (bad) 

news if the absolute imbalance for that day is higher (lower) than the daily average for that 

stock. A stock day is classified as having no news if the absolute imbalance for that day falls 

within the range of plus and minus the daily average. The values in the last 3 columns of Table 

A.1 show considerable variation across stocks in their classification of trading days. On average 

across stocks, 23% of days are classified as good news days, 62% as no news days, and 15% 

as bad news days. We also check robustness using an alternative news classification based on 

social media attention and sentiment (see Tables C.8 and C.9 in online Appendix C).  
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 Therefore, the sample appears representative of a wide range of trading activity and price 

behaviour, even though the stocks are relatively highly liquid, being Dow 30 constituents. 

 

4. Results and analyses 

A summary of the estimation results of the arbitrage capacity model (Equations 5 and 6) 

and the pricing model (Equations 2 to 4) is presented in Panel B of Table 1. Detailed estimation 

results and full accompanying discussion are in the online Appendix B. We proceed here with 

the analysis of mispricing and start by testing for crowdedness.  

We calculate a prospective measure of the average overreaction and underreaction from 

Equation (7) across the 5, 15, and 25 transactions following each trade i, which we refer to as 

AOU5, AOU15, and AOU25, respectively. This measure represents the predictive effect of 

unanticipated arbitrage capacity realised for trade i on subsequent, rather than 

contemporaneous, mispricing. We also calculate the inverse of unanticipated arbitrage capacity 

𝜂𝑖 of each trade i, but for graphical purposes we do so in additive form as 𝛩𝑖 − 𝑆𝑖, which is 

centred around zero, rather than the ratio 𝑆𝑖/𝛩𝑖, which is centred around one. Henceforth, this 

measure is called the SAC (Surprise in Arbitrage Capacity). Positive SAC values indicate higher 

applied capacity than expected, or larger and faster trades than expected, and negative values 

indicate lower applied capacity than expected, or smaller and slower trades than expected.  

Panel A of Table 1 presents summary statistics of AOU across stocks, and Tables A.2 and 

A.3 in the online Appendix A present more detail for each stock. These tables show that the 

mean and median AOU values for all stocks are close to zero. This generally supports the joint 

hypothesis that the pricing model is adequate, in the sense that it reflects changes in beliefs 

about fundamental values in price changes, and that the market is balanced, in the sense that it 

does not overreact more than it underreacts, on average (Fama, 1998). The standard deviation 

of AOU ranges from 0.17 to 3.11 across stocks, and decreases with longer windows, indicating 

that mispricing risk diminishes with the number of future transactions. This is also the case for 
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each stock (see online Appendix A). Skewness ranges from -0.92 to near zero, and excess 

kurtosis ranges from -0.02 to 66.2 across stocks. These values suggest that while the average 

mispricing is zero, the distribution of mispricing may be asymmetric at high frequency. Such 

potential asymmetries are central to our analysis and are examined in detail below, considering 

the relative liquidity of a stock and the type of news.14 

 

4.1.  Asymmetries in mispricing 

Graph 1 in Table 1 plots AOU15 over equally spaced SAC bins for high liquidity stocks 

(black) and low liquidity stocks (grey). Information on AOU5 and AOU25 in Appendix C 

reveals similar features. Graph 1 illustrates the expected spray shape predicted by the shock 

response function of ACD models studied by Fernandes and Grammig (2006).15 In a balanced 

and efficient market, mispricing of fundamentals should be symmetric around zero, meaning 

overreaction should counterbalance underreaction. Therefore, we should expect top-down 

symmetry across the y-axis at zero. Additionally, there should be symmetry between positive 

and negative SAC values of equal magnitude (left-right symmetry across the x-axis at zero, 

indicated by a solid black vertical line), as well as symmetry between high and low liquidity 

stocks. Graph 1, however, reveals noticeable left-right asymmetry and differences between low 

and high liquidity stocks. The left-right asymmetry suggests that subsequent prices overreact 

and underreact differently in faster-than-expected markets (positive SAC) compared to slower-

than-expected markets (negative SAC). Additionally, low liquidity stocks appear to overreact 

and underreact more than high liquidity stocks, especially with larger SAC. 

We test whether this is the case by regressing AOU15 on SAC and a liquidity dummy:16 

 
1,000

15
× ∑ 𝛥𝜑𝑖+𝑛𝑞𝑖+𝑛

15
𝑛=1 = 𝑐𝑚,𝑟 + (𝛾𝑚,𝑟 + 𝛿𝑚,𝑟 ∗ 𝐿𝑖) ∗ 𝑆𝐴𝐶𝑖 + 𝑢𝑖, (10) 

 
14 We also test for asymmetry across buys and sells but find none (see online Appendix C). 
15 Moderated, or flipped, by whether 𝑞𝑖−1 is +1(buy) or -1(sell), as in Equation (7). 
16 While the exact relationship is polynomial, a simple test of linear slopes should suffice. 
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where the dependent variable 𝐴𝑂𝑈15𝑖 ≡ (1/15) ∑ 𝛥𝜑𝑖+𝑛𝑞𝑖+𝑛
15
𝑛=1  is scaled up by 1000; 

(𝑐, 𝛾, 𝛿)′ ≡  𝜷 is a vector of coefficients; 𝑚 = {𝑆𝐴𝐶𝑖 < 0, 𝑆𝐴𝐶𝑖 > 0}; and 𝑟 = {𝐴𝑂𝑈15𝑖 <

0, 𝐴𝑂𝑈15𝑖 > 0}, and L=1 for High Liquidity stocks, and zero otherwise. This empirical 

specification captures the impact of shocks in arbitrage capacity, 𝑆𝐴𝐶𝑖, (i.e., higher or lower 

than anticipated activity from a specific agent type), on subsequent price deviations from 

fundamentals. Consequently, it serves as an empirical impulse response function of prices to 

innovations in trading intensity or arbitrage capacity. According to the impulse response 

function of ACD models (see Fernandes and Grammig, 2006), innovations in trading intensity 

should symmetrically affect expectations of subsequent trading intensity in a recursive manner. 

These recursive expectations, 𝛩𝑖, should be reflected in the information and liquidity price 

components, 𝜃𝑖 and 𝜑𝜄, of subsequent price changes and, consequently, symmetrically on the 

𝑆𝐴𝐶𝑖. Any asymmetry would imply systematic price deviations from fundamentals that are 

disproportionate reactions to surprises in arbitrage capacity as applied to trades. A positive 

(negative) trading intensity shock would imply a faster (slower) than expected market and more 

(less) capital than anticipated pursuing an arbitrage opportunity. A higher 𝛾 coefficient for 

faster market conditions would indicate that higher-than-anticipated arbitrage capacity has a 

more intense impact on subsequent mispricing. Given that this would be due to a larger surprise 

in trading intensity (realised) rather than higher expected trading intensity (modelled), the price 

impact would be consistent with the crowdedness effect. Similarly, the 𝛿 coefficient captures 

systematic incremental differences in the impulse response function of heavily traded stocks 

compared to other stocks. 

We run this regression once, using identity dummies to separate combinations of m and r. 

These combinations correspond to the following quadrants of Graph 1: Quadrant 1, where both 

𝐴𝑂𝑈𝑖 and 𝑆𝐴𝐶𝑖 are positive; Quadrant 2, where 𝐴𝑂𝑈𝑖 is positive and 𝑆𝐴𝐶𝑖 is negative; 

Quadrant 3, where both are negative; and Quadrant 4, where 𝐴𝑂𝑈𝑖 is negative and 𝑆𝐴𝐶𝑖 is 
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positive. These quadrants are abbreviated as Q1 (top right), Q2 (top left), Q3 (bottom left), and 

Q4 (bottom right). 

The slope estimates in each quadrant are presented in the first column, entitled “All”, of 

the top three panels of Table 2.17 Rows entitled “Low Liquidity” present estimates of 𝛾, and 

rows entitled “High Liquidity” present estimates of 𝛿, which is the incremental contribution of 

High Liquidity stocks to 𝛾. The parentheses contain t-statistics. The tabulated slope estimates 

are significant in all quadrants and have the expected sign, indicating a significant relationship 

between mispricing and unanticipated arbitrage capacity throughout, as expected. The R2 

values imply that, on average and in a linear form over all transactions, variations in 

unanticipated arbitrage capacity explain around 31% of variations in subsequent mispricing, or 

38% when the liquidity dummy is activated. This is substantial explanatory power.  

Contrary to expectations of a balanced market, however, significant asymmetries exist in 

this relationship. The slope estimates for “All” transactions are greater in Q4 than Q1 and in 

Q3 than Q2. This indicates top-down asymmetry, and that overreaction is not counterbalanced 

by underreaction. The slope estimates are also greater for Q1 than Q2 and for Q4 than Q3, 

indicating left-right asymmetry and that the market overreacts and underreacts more in faster-

than-expected markets (positive SAC) compared to slower-than-expected markets (negative 

SAC). Additionally, the slope estimates for low liquidity stocks are higher than those for high 

liquidity stocks. The statistical significance of almost all of these differences is confirmed by 

the Wald tests reported in the first column of each of the bottom three panels of Table 2 (p-

values in parenthesis), where “Q1 vs Q2” and “Q4 vs Q3” test left-right asymmetries, while 

“Q4 vs Q3” and “Q2 vs Q3” test top-down asymmetries.18 These reveal significant 

asymmetries between slower-than-anticipated market conditions and faster-than-anticipated 

 
17 From space constraints, we report t-tests and p-values but not the asterisk notation of significance (***, **, *). 
18 The exceptional insignificance of the test on “Q1 vs Q4” and “Q2 vs Q3” for High Liquidity stocks indicates 

no top-down asymmetry for these stocks. “Q2 vs Q3” is insignificant for “All” stocks but significant for low 

liquidity stocks. The coefficient comparison for High Liquidity stocks is conducted on 𝛾 + 𝛿 and not solely on 𝛿. 



20 
 

market conditions, high and low liquidity stocks, and overreaction and underreaction (with the 

last being slightly weaker in high liquidity stocks). Further, values in the “News” columns in 

Table 2 show that these asymmetries largely persist across days of good, bad, and no news, 

albeit with some exceptions.19 Interestingly, High Liquidity stocks exhibit left-right asymmetry 

only, and consistently across days, indicating distinctly different mispricing in faster-than-

expected markets compared to slower-than-expected markets. Notably, contrary to the concept 

of "congestion," which theoretically should only appear in fast markets, the Wald test values 

for left-right asymmetry are negative on good-news days across stocks of all liquidity levels, 

suggesting that mispricing is more pronounced when market activity is slower than expected. 

Furthermore, on no-news days, overreaction is not counterbalanced by underreaction for low-

liquidity stocks. These asymmetries align more with the presence of crowdedness than with 

congestion, which results from mere liquidity squeezes. 

 

4.2. Asymmetries in mispricing uncertainty (risk) and the resolution of crowdedness 

In terms of mispricing risk, Graph 1 shows a greater dispersion of mispricing for positive 

SAC than for negative SAC. We test this asymmetry by an F-test on the ratio of the variances 

of AOU, 𝜎𝐴𝑂𝑈15,𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝐴𝐶
2 /𝜎𝐴𝑂𝑈15,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝐴𝐶

2 .20 The results, reported in the first column 

entitled “All” in Panel A of Table 3 (p-values in parenthesis), are almost all significantly higher 

than one. Therefore, traders overreact and underreact with greater uncertainty when higher-

than-anticipated arbitrage capacity is applied compared to when lower-than-anticipated 

arbitrage capacity of equal magnitude is applied. Moreover, this asymmetry is not indicative 

of a balanced market. 

 
19 The exceptions are: “Q1 vs Q4” during bad news days and “Q2 vs Q3” during no news days for “All” 

transactions, indicating no overall top-down asymmetry; “Q2 vs Q3” during no-news days and bad-news days for 

Low Liquidity stocks, indicating no top-down asymmetry in slow markets; and “Q1 vs Q4” and “Q2 vs Q3” 

during all days for High Liquidity stocks, indicating no top-down asymmetry at all for these stocks. 
20 The findings are qualitatively similar for AOU5 and AOU25 (see online Appendix C). 
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The first column of Panel B of Table 3 presents a similar F-test but on the ratio  

𝜎𝐴𝑂𝑈15,𝐿𝑜𝑤 𝐿𝑖𝑞.
2 /𝜎𝐴𝑂𝑈15,𝐻𝑖𝑔ℎ 𝐿𝑖𝑞.

2 , which should be equal to one if mispricing risk is symmetrical 

across stocks of different liquidity levels. The tabulated values are all greater than one and 

significant and, outside the middle range of SAC, increase with the magnitude of SAC. Thus, 

Low Liquidity stocks react significantly more than High Liquidity stocks to shocks in arbitrage 

capacity. Consequently, liquidity variation across stocks appears to be an important 

determinant of their ability to absorb subsequent uncertainty in mispricing that follows greater 

shocks in applied arbitrage capacity. This reinforces the evidence presented in Section 4.1 of a 

stronger crowdedness effect in less liquid stocks. Finally, Panel C of Table 3 presents F-test 

results on variance ratios across types of news and agents. Mispricing uncertainty is higher 

during days of bad news, and for algorithmic trades than institutional and retail trades. 

In summary, there are significant asymmetries in the dispersion of the market’s reaction 

to unanticipated arbitrage capacity. On average, the market reacts with greater uncertainty in 

faster-than-expected conditions, for lower liquidity stocks, during days of bad news than during 

other days, and for algorithmic trades than institutional and retail trades. High liquidity stocks 

are better at absorbing liquidity-driven shocks that arise from crowdedness, most likely due to 

greater depth. This aligns with our zero-profit condition modelling, as all relevant costs are 

more readily and swiftly recovered in more liquid environments, reducing pricing sensitivity 

to unanticipated arbitrage capacity. In such environments, the market requires more significant 

liquidity shocks to exhibit similar overreactions or underreactions.21 

 
21 While uncertainty in overreaction and underreaction is one of the symptoms mentioned by Stein (2009) of 

crowdedness emanating from unanticipated arbitrage capacity, in our UHF setup it is a natural consequence of the 

equilibrium mechanism that incorporates the ACD shock response function. Asymmetries in this uncertainty, 

however, are not, and the evidence we report points towards a number of possible issues. The first is indeed the 

presence of crowdedness. However, other reasons are also possible. For example, the possible existence of omitted 

variables that may increase the signal-to-noise ratio of order flow and applied arbitrage capacity beyond our 

pricing model, or other behavioural effects, cannot be entirely ruled out, albeit the crowdedness interpretation is 

more likely given the enhanced features of our pricing model. This inference is supported by our prediction 

analyses in Sections 4.3 and 4.4. 
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It is interesting to measure the length of time over which these asymmetries in mispricing 

risk persist. Graph 2 in Table 1 plots the standard deviation of AOU over ‘bins’ of the next 5, 

15, 25, 50, 75, 100, 125, 200, 250, and 500 transactions. The grey line shows that this standard 

deviation declines with the number of future transactions, indicating a dissipation of mispricing 

risk and a resolution of uncertainty in mispricing over longer horizons. Tabulated below the 

graph are values of an F-test (and its p-values) on the incremental decrease in the variance of 

AOU from one bin to the next from left to right, and the average and the median time it takes 

for these transactions to occur. The F-test shows that the incremental dissipation is significant 

until transaction 150 and, consequently, most uncertainty in mispricing is resolved by the time 

150 transactions have occurred (or 100 transactions if 5% is taken instead of 10% as the cut-

off significance level). This takes an average time of 1.73 min or a median time of 0.23 min 

(100 transactions take an average of 1.15 min or a median of 0.15 min). Although short, this 

timescale is relatively very long for algorithmic trading. We consider this an early indication 

that mispricing uncertainty due to crowdedness, which is a liquidity effect emanating from 

surprises in arbitrage capacity, persists beyond algorithmic timescales. Next, we explore this 

further within the context of UHF phenomena, algorithmic trading, and institutional trading. 

 

4.3.  Does crowdedness predict ultra-high frequency extreme events? 

Important to regulators, market operators, and investors are the possible causes of the 

frequent sudden failure of markets, such as flash crashes and price dips, or their flip 

counterparts, price bubbles and spikes. Could crowdedness due to uncertainty in arbitrage 

capacity, or irrational behaviour by agents, predict UHF phenomena? Although causation is 

difficult to isolate at high frequency, we draw meaningful inferences through a variety of 

methods. We conduct two analyses. The first tests predictability on a trade-by-trade basis, and 

the second uses interval measures to allow comparison with the VPIN of Easley et al. (2011a). 
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4.3.1. Trade-by-trade predictability 

We start by formulating two new UHF measures of crowdedness: 𝐶𝑟𝑜𝑤𝑑𝑖 = |𝑂𝑈𝑖| 𝑆𝐴𝐶𝑖−1⁄  

and |𝐶𝑟𝑜𝑤𝑑𝑖| = |𝑂𝑈𝑖| |𝑆𝐴𝐶𝑖−1|⁄ , where 𝑂𝑈𝑖 = Δ(𝜙𝑖𝑞𝑖) is the overreaction and underreaction 

in trade i. Both measures capture the mispricing of a trade per unit SAC of the previous trade, 

but the first measure is signed and distinguishes faster-than-anticipated market conditions 

(when Crowd>0) from slower-than-anticipated market conditions (when Crowd<0). Next, we 

investigate how these measures predict UHF extreme events (crashes and spikes), buy and sell 

runs (herding), heightened demand for immediacy (impatience), increases in trading costs, and 

the intensity of presence of algorithmic, institutional, and retail trades. To this end, we follow 

the previous literature (e.g., Johnson et al., 2013) in defining the following variables: 

1. UHF. A dummy variable that counts ultra-high-frequency extreme price events on one side 

of the order book that feature price crashes or spikes: 

  𝑈𝐻𝐹 = {
1, 𝑖𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 1,500𝑚𝑠 𝑎𝑛𝑑 𝑚𝑖𝑛𝑠𝑖𝑑𝑒𝑑𝑛𝑒𝑠𝑠 = 10 𝑎𝑛𝑑 𝑚𝑖𝑛|𝛥𝑃| = 0.8%

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
,  

where, ms = milliseconds, and sidedness = |trade imbalance|/number of observations = 

|#𝑏𝑢𝑦𝑠 − #𝑠𝑒𝑙𝑙𝑠|/#𝑡𝑟𝑎𝑑𝑒𝑠 is a modified version of Sarkar and Schwartz’ (2009) measure 

based on correlations that captures asymmetric-information-motivated trading. 

Additionally, see Johnson et al. (2013) for robustness on the 1,500ms length. 

2. Runs. This variable is used in the overreaction literature and captures the average intensity 

of directional trading over several trades (e.g., herding):  

  𝑅𝑢𝑛𝑠 = (𝑟𝑢𝑛𝑏𝑢𝑦𝑠 + 𝑟𝑢𝑛𝑠𝑒𝑙𝑙𝑠) #𝑡𝑟𝑎𝑑𝑒𝑠⁄ , where 

  𝑟𝑢𝑛𝑏𝑢𝑦𝑠 = {
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑦𝑠, 𝑖𝑓 ≥ 2

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. 

This measure has a maximum of 1 when all trades are in one run. Higher values indicate 

more trades occurring in a specific direction and lower values indicate more random trading. 
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3. Algorithmic (Algo.). A dummy variable that counts trades proceeding faster than the reactive 

ability of humans (i.e., machine trades; see Johnson et al., 2013):  

𝐴𝑙𝑔𝑜. = {
1, 𝑖𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 650𝑚𝑠 
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

We also distinguish trades with duration < 1ms (called Algo2) that may be involved in 

snipping or ‘arms races’ (see Haldane, 2011; Budish et al., 2015; Aquilina et al., 2022). 

4. Institutional (Inst.). A dummy variable that counts large-value trades as a proxy for the 

presence of institutional trading (see e.g., FINRA rule 5320; Mackintosh, 2020)22: 

𝐼𝑛𝑠𝑡. = {
1, 𝑖𝑓 𝑡𝑟𝑎𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 > $100𝑘
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 All other trades are classified as ‘Retail’ trades. 

5. Trade-to-order ratio (TR). This is the ratio of the volume of trades to the volume of best 

quote revisions. It captures the presence of market orders relative to limit orders and proxies 

the relative demand for immediacy (liquidity) over price, or the degree of “impatience.” 

6. Spread. This is the bid-ask spread in $ just before a trade. It reflects posted trading costs.  

Basic statistics of the first 4 variables are reported in Panel A of Table 1 and, in more 

detail, in Table A.1 in the online Appendix A. Out of the 230,084,293 trades in the sample, 

73.12% are algorithmic, of which 9.69% are of sub 1ms duration, 3.3% are institutional, and 

23.58% are retail. There were 1472 UHF extreme events during the sample period, occurring 

most frequently in the Apple Inc stock (281) followed by the Microsoft stock (137), and least 

frequently in the TRV stock (3) followed by the AXP stock (4). Every other stock experienced 

at least 11 such events during the sample period.  

We first confirm the presence of crowdedness in these trades. The last three columns of 

Table 2 show that the asymmetries in all trades described in Sections 4.1 and 4.2 largely exist 

 
22  The Financial Industry Regulatory Authority (FINRA) rule 5320 that prohibits trading ahead of customer orders 

(front running) refers to institutional accounts (Rule 4512(c)), orders of 10,000 shares, and orders with a minimum 

value of $100k, as “large orders”. We also consider alternative definitions of large and sub-penny trades for 

robustness. The results, in Tables C.10 and C.11(A, B) of online Appendix C, corroborate those reported here. 
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also in algorithmic, institutional, and retail trades when considered separately, especially left-

right asymmetry between faster- and slower-than-expected markets (Q1 vs Q2 and Q4 vs Q3). 

There are some exceptions. Retail trades in high-liquidity stocks do not exhibit significant top-

down asymmetry (Q1 vs Q4 and Q2 vs Q3), and those in low liquidity stocks exhibit top-down 

asymmetry in slow markets (Q2 vs Q3) but not in fast markets. Both algorithmic and 

institutional trades exhibit significant left-right and top-down asymmetries in mispricing, 

regardless of stock liquidity. The last 6 columns of Panel A of Table 3 show that, in general, 

algorithmic and retail trades also exhibit strong asymmetries in the uncertainty of mispricing 

regardless of the level of stock liquidity, while institutional trades show much weaker 

asymmetry and only in a few bins of SAC. Panel B of Table 3 shows that asymmetries in 

mispricing uncertainty are much greater in low-liquidity than in high-liquidity stocks. Panel C 

shows that, in most SAC bins, they are greater in algorithmic trades than in retail trades, and 

in retail trades than in institutional trades. These results confirm the presence of the 

crowdedness effect in algorithmic, institutional, and retail trades, albeit to varying extents. 

To investigate the predictive power of crowdedness, we run the following regressions:  

  𝑄𝑖+𝑠 = 𝑐 + 𝑎(|𝐶𝑟𝑜𝑤𝑑| or 𝐶𝑟𝑜𝑤𝑑) + 𝐶𝑉𝑖 + 𝑢𝑖 + 𝑒𝑖 (11) 

where 𝑄𝑖+𝑠= (UHF, Algo., Runs, Inst., TR, Spread)' is a vector of dependent variables indexed 

by s = 5, 25, 50, 100, and 150 bins of prospective transactions over which these variables are 

measured; 𝐶𝑉𝑖= (duration, trade volume, order count, sum of volume at BBO)' is a set of control 

variables measured at the time of trade i; c and a are coefficients; 𝑢𝑖 are fixed effects; and 𝑒𝑖 

are errors. All variables are proportions of the number of trades in the prospective transaction 

bins, except the Spread, which is an average in each bin.  

The estimation results are presented in Table 4 where the explanatory variable Crowd is 

split into positive and negative parts (Crowd+ and Crowd-) to reveal differential effects 

between faster and slower markets. The most prominent result is that |Crowd| is significantly 

positively associated with the prospective values of all six dependent variables for up to 150 
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transactions ahead (intensity of runs to 50 transactions ahead and trade/order ratio to 100 

transactions ahead). The R2 values range from 5.25% to 38.12% and are higher for shorter bins 

where they range from 11.94% to 38.12% over the next 5 transactions. This is sizeable 

explanatory power. Thus, crowdedness is a strong predictor of UHF extreme events, the 

proportions of algorithmic and institutional trades, the intensity of runs, the demand for 

immediacy, and trading costs. Further, the magnitude and significance of the slopes generally 

decline over longer bins, indicating lower predictive power over longer horizons. The 

exception is the spread, where the slope magnitude increases monotonically, indicating higher 

predictive accuracy for trading costs over longer horizons. This increasing sensitivity of trading 

costs to crowdedness coupled with a declining sensitivity of the trade/order ratio over longer 

horizons indicates that although the impatience for liquidity becomes less sensitive to 

mispricing per unit shock in arbitrage capacity, the effect on trading costs apparently persists. 

This may make certain participants, such as institutions, more cautious in entering a crowded 

market because trading costs become more sensitive to liquidity variations, increasing their 

future uncertainty. We investigate this further in our interval analysis in Section 4.3.2.  

Regarding the results on Crowd+ and Crowd- in Table 4, their slopes are all significant, 

but those of Crowd+ are smaller in magnitude than those of Crowd- except for algorithmic 

trading during the next 5, 25, and 50 trades, and the intensity of runs over the next 5 trades. 

This indicates that the prospective presence of algos over the next 50 transactions, and of runs 

over the next 5 transactions, is more sensitive to crowdedness in faster- than in slower-than-

anticipated markets. Rows entitled t(+)-|-| present t-tests (p-values in parenthesis) of the 

difference in slopes between Crowd+ and Crowd-. These show that asymmetry in the 

sensitivity to crowdedness between faster and slower markets persists mainly over the next 5 

transactions for all variables except UHF. Note that t(+)-|-| for the next 5 transactions is 

significant and negative for institutional trades, trade-to-order ratio, and the bid-ask spread, 

indicating a higher probability of increases in these variables during slower-than-anticipated 
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markets. Conversely, t(+)-|-| for the next 5 transactions is significant and positive for algorithmic 

trades and the intensity of runs, indicating a higher probability of increases in these variables 

during faster-than-anticipated markets. This asymmetry does not exist for UHF events, even 

though, like the other variables, UHF is significantly predicted by crowdedness over horizons 

to 150 transactions. Finally, a threshold value of crowdedness, beyond which mispricing 

increases substantially but at a decreasing rate, is estimated at around 5 cents.  

In summary, crowdedness at trade level is a strong predictor of UHF extreme events, 

algorithmic trades, herding, institutional trades, impatience for liquidity, and spreads over the 

next 150 transactions. It also helps differentiate patterns across fast and slow market conditions 

over the short time scale of the next 5 transactions, which have an average duration of 3.6 sec. 

 

4.3.2 Interval predictability of crowdedness on UHF events and a comparison with VPIN 

We now investigate the predictive power of crowdedness on UHF events in interval 

measures and compare it to the Volume Synchronised Probability of Informed trading (VPIN) 

of Easley et al. (2011a). Additionally, we analyse the likely causes of UHF extreme price 

events. The primary relevance of VPIN to our study is that it is designed to capture costs related 

to order flow toxicity, linked by some scholars to short-term price deviations and corrections 

arising from disruptions in order flow. Generally, VPIN is the ratio of average order imbalances 

over a sample length defined by volume “buckets.” The numerator of this ratio proxies for 

expected directional or informed trading, and the denominator proxies for the total number of 

trades over which this occurs. Several studies, such as Abad and Yagüe (2012) and Andersen 

and Bondarenko (2014a, b), argue that the absolute magnitude of VPIN is highly sensitive to 

the selection of the volume bucket size and the sample length. We address these concerns in 

our calculation of VPIN, which we fully describe in the online Appendix D. It is interesting to 

investigate the incremental predictive contribution of our Crowd measure on UHF events 

relative to that of VPIN, algorithmic trading, institutional trading, and their interactions.  
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We begin by estimating the following regressions in the levels and the lags using interval 

measures, as VPIN is an interval measure: 

𝑈𝐻𝐹𝑡 = 𝑐 + 𝑎𝑉𝑃𝐼𝑁𝑡 + 𝛽 ∑ |𝐶𝑟𝑜𝑤𝑑|𝑡𝑟𝑎𝑑𝑒𝑠𝑡
+ 𝛾𝐴𝑙𝑔𝑜.𝑡+ 𝛿𝐼𝑛𝑠𝑡.𝑡+ 𝜹𝒊𝒏𝒅𝒆𝒙𝑡 + 𝜻𝐶𝑉𝑡 + 𝑢𝑡 +

𝑒𝑡, 

𝑈𝐻𝐹𝑡 = 𝑐 + 𝑎𝑉𝑃𝐼𝑁𝑡−1 + 𝛽 ∑ |𝐶𝑟𝑜𝑤𝑑|𝑡𝑟𝑎𝑑𝑒𝑠𝑡−1
+ 𝛾𝐴𝑙𝑔𝑜.𝑡−1+ 𝛿𝐼𝑛𝑠𝑡.𝑡−1+ 𝜹𝒊𝒏𝒅𝒆𝒙𝑡−1 +

𝜻𝐶𝑉𝑡−1 + 𝑢𝑡 + 𝑒𝑡,  (12a and 12b) 

where 𝑡 indexes the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (5′′, 30′′, 60′′, 5′, 30′, 60′)′ over which all variables are 

calculated; (′′) denotes seconds and (′) denotes minutes; UHF, Algo., and Inst. are redefined as 

the numbers of trades classified as UHF events, algorithmic, or institutional per stock per 

interval; 𝒊𝒏𝒅𝒆𝒙𝑡 = (𝐴𝑙𝑔𝑜.𝑡× ∑ |𝐶𝑟𝑜𝑤𝑑|,𝑡𝑟𝑎𝑑𝑒𝑠𝑡
 𝑉𝑃𝐼𝑁𝑡 ×  ∑ |𝐶𝑟𝑜𝑤𝑑| 𝑡𝑟𝑎𝑑𝑒𝑠𝑡

)′ is a vector of 

two interaction terms of |Crowd| with Algo. or VPIN; CV = (conditional variance of 𝛥𝑝𝑡 (C. 

Var.), average spread, average trade/order ratio, average duration, average volume)′ is a set 

of control variables calculated over interval t; 𝑢𝑡 are fixed effects; and 𝑒𝑡 are errors. We include 

C. Var. in CV to account for evidence in the literature that volatility is a predictor of turmoil. 

The estimation results are presented in the first column of each interval panel in Table 5.23 

First, R2 of the level regressions range from 37.47% to 57.16%, indicating that a substantial 

proportion of variation in UHF extreme events is predicted by the variables. Second, the most 

notable result from Table 5 is that both the level and the lag of |Crowd| are positive and 

significant, even with the inclusion of other variables. Thus, |Crowd| captures significant 

incremental information. Third, the coefficient of |Crowd| is more significant than that of VPIN 

for level intervals of 30′′ or longer, and more significant than those of Algo. and Inst. for all 

intervals. This indicates that crowdedness is a more important predictor of UHF events over 

these horizons than VPIN or algorithmic and institutional trading. Further, the significance of 

 
23 Inferences focus on the degree of significance of the coefficients since the variables are not normalised for the 

coefficient magnitudes to be comparable. For brevity, estimates of CV coefficients other than C. Var. are not 

reported. All results are available from the authors. We use italics for variables we calculate. 
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VPIN drops considerably to marginal or insignificant levels at intervals of 30′′ or longer in the 

levels and at intervals longer than 60′′ in the lags. The drop in VPIN’s significance is even 

larger when its interaction with |Crowd| is activated (Table 5) than when it is muted (Table 

C.12 in the online Appendix C).24 When this interaction term is activated, VPIN loses 

significance for level intervals longer than 30′′, while |Crowd| remains significant throughout. 

Furthermore, VPIN’s coefficients turn negative in lagged regressions at intervals 30′ and 60′.  

Similar, but stronger, results are observed for Algo. Specifically, its significance 

diminishes substantially, and its coefficient becomes negative for most intervals of 30′′ or 

longer when its interaction with |Crowd| is considered (compare Tables 5 and C.12). 

Consequently, crowdedness is a stronger predictor of UHF events than algorithmic trading, 

carrying information that at least partially subsumes that in Algo. Inst., by contrast, remains 

insignificant throughout. This clearly indicates that trade size alone does not predict UHF 

events and is only useful when combined with volume and speed, being trade dimensions 

integral to algorithmic trading and the calculations of |Crowd| and VPIN (albeit in a more 

aggregated form than in |Crowd|). Therefore, it appears that, on average, large trades alone do 

not trigger UHF extreme events. Instead, crowdedness is a more significant, stable, and reliable 

predictor of these events compared to VPIN or algorithmic trading. The predictive power of 

VPIN and Algo. is notably influenced by crowdedness and is almost subsumed by it. 

Collectively, these results may suggest that |Crowd|, VPIN, and Algo. are correlated. While 

such correlation might be anticipated in interval measures influenced by trading volume and 

speed, it raises concerns about potential multicollinearity and obscures issues of causation. To 

address these concerns, we first assess the extent and nature of multicollinearity by reporting 

the Variance Inflation Factor (VIF) in Table 5.25 The lowest VIF value of 1 is observed for the 

 
24 Table C.12 presents estimation results over more intervals and when index, Algo., or Inst. are excluded. 
25 These are reported as the second number within the parentheses that appear below the coefficient estimates. A 

VIF=1 indicates no multicollinearity, while values above 1 indicate higher levels of multicollinearity. 
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conditional variance of price change (with the exception of a value of 2 in the lagged 30′′ 

interval), indicating almost no multicollinearity overall for this variable. The next lowest VIF 

value, ranging from 1.2 to 2.2, is reported for |Crowd|, indicating a small level of 

multicollinearity that reflects the correlations mentioned above. All other variables, including 

the interaction terms, exhibit higher levels of multicollinearity. Notably, VPIN shows the 

highest VIF values in all regressions except one (60′′ interval), with values ranging from 1.4 

to 9.7, clearly indicating substantial multicollinearity relative to the other variables. Thus, while 

information overlap exists, its extent varies across variables and may obscure inferences about 

which variable causes UHF events or acts as a trigger to the other variables.  

We address this causation through several approaches that further analyse the 

multicollinearity indicated by the VIF values. First, the previous inclusion of interaction terms 

in the interval regressions shows that |Crowd| has a direct predictive power on UHF events, 

even in the presence of other variables. Further, by omitting the interaction terms and 

comparing the results (Table C.12), we capture the moderation effect of variables on each 

other. In this context, |Crowd| remains significant with interactions present, while VPIN and 

Algo. decrease in significance, change coefficient signs, and exhibit higher VIF values. This 

indicates that |Crowd| moderates the impact of VPIN and Algo. in predicting UHF events, rather 

than the reverse. Third, we explore the potential indirect mediation effect of |Crowd| on UHF 

through VPIN and Algo. This is reported as Ind. in Table 5, along with its (2.5%, 97.5%) 

bootstrapped confidence interval, enclosed in parentheses in adjacent columns.26 All 

confidence intervals do not bracket zero, and their mid values are close to those of Ind., 

supporting a significant mediation effect of |Crowd| on UHF through VPIN and Algo. 

combined, which explains the correlations reported above. We further use Sobel’s (1982) 

 
26 The indirect effect of |Crowd| on UHF through VPIN and Algo is the change in UHF for every unit change in 

|Crowd| that is mediated by VPIN or Algo. Ind. is Judd and Kenny’s (1981) measure of the difference between the 

partial and simple coefficients on |Crowd| from a regression of UHF on |Crowd| and VPIN or Algo. and from 

another regression of UHF on |Crowd| only. Sobel’s (1982) method used below is based on the delta method. 
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method to decompose this combined mediation effect into components attributable to VPIN 

and Algo., reported separately as V and A in the row labelled V | A in Table 5. The associated 

confidence intervals confirm a significant indirect mediation effect through each variable, with 

V values exceeding A values, indicating greater mediation through VPIN than through Algo. 

This suggests that VPIN carries information on crowdedness but also incorporates other 

information, as it is based on total price impact rather than solely on liquidity costs. Thus, 

crowdedness is a stronger and purer direct and indirect predictor of UHF events than VPIN or 

Algo., permeating both variables, particularly VPIN. Fourth, to eliminate multicollinearity and 

clarify causation, we estimate LASSO regressions to reduce dimensionality through variable 

selection.27 The results (Table 5) provide strong evidence that |Crowd| remains a significant 

variable in all estimations and, in some estimations, is the only variable that persists. In 

contrast, VPIN is eliminated in all LASSO regressions of intervals of 60′′ or longer in the levels 

and in all lagged regressions. When VPIN appears significant, its significance is much weaker 

than that of |Crowd|. Algo. and Inst. are eliminated in all LASSO regressions, clearly indicating 

that they are entirely subsumed by crowdedness. The interaction terms are significant only in 

intervals of 5′ or less in level regressions and are eliminated in all lagged regressions. 

Accordingly, VPIN and Algo. have an indirect impact in some intervals only, driven mainly by 

crowdedness. Thus, when VPIN and Algo. contribute in predicting UHF events, it is likely due 

to crowdedness.28 Furthermore, the reduction in R2 between non-LASSO and LASSO 

regressions confirms that |Crowd| explains the largest proportion of UHF variations. These 

results provide clear evidence that crowdedness is a much stronger predictor of UHF extreme 

 
27 These Least Absolute Shrinkage and Selection Operator regressions optimise a trade-off between model sparsity 

and prediction accuracy by penalising coefficients of variables that do not contribute sufficiently to predictive 

power, such as those that are highly collinear. We estimate these regressions using the Bayes Information Criteria 

to optimise the shrinkage parameter for variable selection, and 70% of the sample for training. 
28 We also analyse lead-lag relationships and Sims causality through VARs on the interval variables. The results, 

reported in Appendix C, show that crowdedness causes the other variables and is a catalyst and a trigger of 

algorithmic trades when they play a role in UHF events by contributing to liquidity spirals and order flow toxicity.  
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events than VPIN or algorithmic and institutional trading. It carries incrementally different 

information and acts as a trigger to algorithmic trading during liquidity spirals. 

The conditional variance of price change is the only variable, aside from crowdedness, that 

shows significant direct predictive power on UHF events, underscoring the high level of 

volatility associated with these events. However, the significance of this variable diminishes 

considerably over longer intervals and vanishes in lagged regressions of 30′ or longer and in 

LASSO regressions of 5′ or longer. In contrast, |Crowd| remains significant in all LASSO 

regressions, both level and lagged. This is a strong result, as volatility is regarded as a primary 

predictor of UHF events. Our results indicate that, while the predictive power of volatility 

remains significant, it is not as persistent as that of crowdedness over longer intervals.29 

Another noteworthy observation is that all coefficients on the level and lag of Inst. are 

negative and mostly insignificant, particularly when the interaction terms are included. The 

negative coefficients, where significant, suggest the withdrawal of institutions (large trades) 

just before and during UHF events, potentially reducing market liquidity and increasing the 

proportional presence of small and opportunistic players. This could further contribute to the 

liquidity spirals often cited as the cause of flash events – an inference consistent with 

discussions in the literature, such as the joint reinforcement of market liquidity and funding 

liquidity and the flight to quality mentioned by Brunnermeier and Pedersen (2009). 

Figure 1 plots 9 measures during the 6 May 2010 flash crash, which occurred from 14:32hr 

to 15:08hr.30 Volatility spiked at 11:35hr, then fluctuated wildly around a mild uptrend until 

14:05hr. Apart from a small rise at 14:34hr, it continued to decline during the crash, with a 

sudden drop at 15:05hr. The correlations between VPIN, Algo. and |Crowd| are evident in a 

 
29 Considering variance as a control variable partially accounts in our sample for Abad et al.’s (2018) critique that 

ex ante realised volatility subsumes VPIN’s identification of the price impact due to toxicity. 
30 The CFTC concluded 5 years later that “spoofing” by a single trader in E-mini S&P futures significantly 

contributed to the conditions that led to the crash. Figure 1 shows that crowdedness in Dow stocks increased 

during the period (11:17–13:40hrs) in which the trader used his ‘dynamic layering’ programme on E-minis. 
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common rising trend before the crash, which persisted for an additional 7 minutes. However, 

|Crowd| exhibited a stronger and clearer rising trend above its threshold value of 5 cents, 

beginning earlier at around 12:34hr. Its sudden drop at 14:45hr coincided precisely with a spike 

in the Spread, which disrupted the liquidity spiral by reducing the opportunity of latency 

arbitrage, thereby helping to mitigate the crash. |Crowd| then decreased but remained above its 

threshold for the remainder of the day. Institutional trading was noticeably lower during the 

crash period. These observations align with our findings across all 1472 UHF events analysed. 

The above results prompt the question: what does |Crowd| capture that VPIN and price 

volatility do not, or not as precisely? |Crowd| has several distinct features. First, it is based on 

a pricing model of trades, whereas VPIN is not and instead considers order imbalances rather 

than trades. Second, our mispricing measure focuses on the liquidity cost component of price 

changes after filtering out asymmetric information effects and their dynamic interactions with 

expected liquidity (reflexivity). |Crowd| captures the rate of the market’s overreaction in 

unexpected liquidity costs per unit of uncertainty in arbitrage capacity, providing a “purer” 

measure of the costs most relevant to order flow toxicity. Third, our modelling of arbitrage 

capacity is more precise and innovative. It differentiates expected from unexpected capacity 

and estimates these from trades rather than orders, thereby aligning estimates with the realised 

capacity actually applied by traders to arbitrage opportunities. Additionally, expected capacity 

is estimated for three distinct agent types while accounting for the amount, speed, and intensity 

of their presence, allowing for a more nuanced consideration of agent specific reactions and 

interactions. Consequently, |Crowd| captures market overreactions to surprises in agents’ 

arbitrage capacity. In contrast, VPIN relies on order imbalances that reflect ‘intended’ rather 

than ‘applied’ trading actions, and uses total price reaction (numerator) and, rather 

controversially, specified volume buckets (denominator) to estimate the level of trading 

intensity. Total price reaction, however, conflates interacting and opposing asymmetric 

information and liquidity effects, which may offset each other in certain market conditions (see 
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Ibrahim and Kalaitzoglou, 2016). Thus, VPIN may not relate as clearly to toxicity or other 

liquidity-related UHF phenomena. |Crowd| focuses on the liquidity-related mispricing 

implications (numerator) of innovations in the amount, speed, and presence of agents’ liquidity 

(denominator), offering a finer breakdown of price reactions and a greater focus on liquidity. 

Unlike VPIN, |Crowd| does not focus on trading intensity, but accounts for its expected role in 

both the liquidity and information components of price and filters out the latter. It captures 

surprises in liquidity-related effects while accounting for the expected presence and trading 

intensity of agents. This provides a more precise link to temporary liquidity-related phenomena 

since surprises in capacity elicit diverse reactions across agents unrelated to fundamentals, 

especially at high frequency with machine agents acting at speed and when liquidity fears 

override information concerns. Our measure, therefore, better relates to toxicity, liquidity 

spirals, and UHF phenomena, and our empirical evidence supports this inference. 

 

5. Some implications and recommendations 

There are several implications for our results. We present here a selection and report more 

detail in the online Appendix E. First, a general and direct primary use of our crowdedness 

measure is in predicting flash crashes, spikes, and the other UHF phenomena analysed in 

Section 4. Second, crowdedness imposes significant economic costs on investors and market 

makers. Table C.15 presents estimates of these costs for hypothetical “surprise” trades. For an 

average-sized trade executed 10 times faster (i.e., a typical algorithmic trade), crowdedness 

cost can reach $41.37, or 2.01% (0.20%) of trade value for $10 ($100) stocks. For an extreme 

trade that is 50 times larger and faster than average, the cost can rise to $2,272, or 2.21% 

(0.22%) of trade value for $10 ($100) stocks. Accordingly, a trading strategy to mitigate 

crowdedness costs over the next 150 transactions can be proposed. Investors should execute 

multiple small orders to buy low-crowded, high-denomination, high-liquidity stocks, and a few 

large orders to sell highly crowded, low-denomination, low-liquidity stocks. This option-like 
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strategy capitalizes on the “crowdedness premium” across stocks and order sizes, particularly 

when crowdedness is high. Its hedge ratio of low-to-high crowded stocks could be adjusted 

based on changing levels of market crowdedness and trading intensity. Investors can also use 

options on these stocks, if available, to construct strategies to hedge the delta, gamma, 

vega/kappa, or theta of mispricing risk emanating from unanticipated capacity. If short selling 

and liquidity restrictions bind, temporarily halting trading might be advisable until 

crowdedness costs decrease. This effectively serves as a self-imposed “circuit breaker”. 

Estimates of crowdedness costs are also relevant to market makers. Huang and Wang 

(2009), for instance, show that even small costs for maintaining market presence prompt market 

makers to limit risk exposures, failing to offset liquidity imbalances unless substantial price 

adjustments are made to compensate for the additional risky inventory. Therefore, estimates of 

crowdedness costs can assist market makers in better managing their inventories and setting 

appropriate spreads during liquidity imbalances. Incorporating predicted crowdedness costs in 

the spread would compensate market makers for liquidity and penalise prospective trades with 

the mispricing they cause when contributing to liquidity spirals. Wider spreads would mitigate 

speculative arbitrage without halting trading, functioning in a similar manner to the Anti-lock 

Braking System (ABS) found in automobiles. Just as ABS mitigates adverse effects of sudden 

stops, wider spreads would prevent the negative impacts of the sudden cessation of information 

and liquidity resolution in prices that accompany extended trading halts. 

Another implication relates to improvements in trading rules and market design. Our 

results indicate that institutions, whose trades are more anchored to fundamentals than those of 

others, withdraw from trading during crowded conditions. Their withdrawal deprives the 

market from their stabilizing influence, potentially exacerbating liquidity spirals. To mitigate 

the adverse effects on market stability and encourage institutions to return to the market, we 

propose two measures for regulators and market operators. First, we recommend implementing 

a hybrid trading mechanism that dynamically switches from continuous trading to batch trading 
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during crowded periods. Batch trading would reduce trading panic, mitigate unfair latency 

advantages, and allow more time to reassess fundamentals and replenish liquidity (see Budish 

et al., 2015, 2023). We suggest using the estimated $0.05 threshold, beyond which crowdedness 

increases substantially, as a trigger for switching from continuous to batch trading in this hybrid 

mechanism.31 Second, we propose enhancing the current circuit breaker tier system, which 

halts trading based on price volatility. Our findings show that crowdedness is a more persistent 

and precise predictor of UHF events than volatility. We suggest setting the duration of trading 

halts based on both the level of crowdedness and the percentage price change. For example, 

halt trading for 5, 10, 30, 90 mins if the percentage price change is 5–9, 10–12, 13–19, or 20+ 

and crowdedness increases above 5, 10, 12, or 15 cents/share during the last 10 mins of trading, 

respectively. The rationale for conditioning on both crowdedness and volatility is that 

sometimes volatility is high but crowdedness is low, suggesting efficient pricing, while in other 

times the opposite is true, indicating inefficient pricing. This tapered system would better 

reflect the degree of mispricing and the likelihood of UHF extreme phenomena.  

Regarding regulation, recent enhancements like Reg NMS aim to mitigate adverse effects 

of order routing, payment for order flow (PFOF), short selling, and the coordinated behaviour 

of retail traders who deliberately create price pressure on certain stocks. Retail platforms like 

Robinhood (RH) generate revenue through PFOF and short selling, using social media 

networks like Reddit and X (Twitter) to herd retail investors towards “meme” stocks. This 

trading is primarily liquidity-driven, which is the focus of our crowdedness measure. Recall 

that our sample includes retail behaviour, with 418 (28%) of the 1,472 UHF extreme events in 

2019 occurring in Apple and Microsoft, stocks regularly held by retail platform investors. 

Additionally, our analysis of Google attention in Table C.9 shows significant crowdedness 

during high attention bad news days. Thus, both our measure and results are relevant to meme 

 
31 Note that the 5 cents estimate of the threshold value of crowdedness seems stable across 2019 (Table 1) and the 

two flash crash days of 6 May 2010 (Figure 1) and 24 August 2015 (Figure C.1 in the online appendix). 
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stocks and social trading because |Crowd| captures liquidity-based mispricing associated with 

uncertain demand and supply from retail platforms and elsewhere, predicting herding activity, 

liquidity impatience and spirals, trading costs, and resultant UHF events. These phenomena are 

pertinent to ongoing regulatory discussions of retail trading behaviour. As such, |Crowd| can 

be used to raise retail investor awareness of risk levels, not just of mispricing, but also of 

herding, liquidity spirals, crashes, and spikes in meme or other stocks, as well as the risk of 

predatory trading by HF and algorithmic traders who have speed advantages (Brunnermeier 

and Pedersen, 2005). Moreover, the rate of increase of a stock’s crowdedness above its long-

term threshold value – regarded as its “steady state” – can indicate the stock’s stability for 

short-term diversification or hedging during crowded periods. Used in this manner, |Crowd| 

can measure market stability. The literature is divided on the impact of social investors. Barber 

et al. (2022), for instance, find RH investors destabilizing, while Welch (2022) finds them 

stabilizing as they buy during price downturns without panic or margin calls, and their 

aggregate portfolio has good timing and alpha. To this end, |Crowd| can distinguish whether 

buying during downturns or selling during upturns results in prices that reflect fundamentals, 

indicating the efficiency of the pricing mechanism for individual stocks or funds. Additionally, 

a higher rate of occurrence of extended trends in a stock’s crowdedness suggests lower market 

quality in this stock. Therefore, |Crowd| can serve as a dual measure of market quality (pricing 

efficiency) and market stability (reduced probability of extreme events and other UHF 

destabilizing phenomena). Further research could explore these two aspects around recent 

regulatory proposals, such as the Dec 2022 Reg Best Execution and Reg NMS enhancements 

(relating to variable tick sizes, reduction in access fee caps for protected quotations, accelerated 

transparency of the best priced orders), and the Feb 2023 Disclosures on Volume-based 

Transaction Pricing (VTP) relating to transaction fees and rebates. 

In a related context, Madhavan (2012) finds that Exchange Traded Product (ETP) prices 

delinked from their Net Asset Values (NAVs) on 6 May 2010, indicating distorted prices of 
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component stocks rather than ETP pricing failure. He attributes this to increased fragmentation 

of the US market. We also report distorted stock prices during 6 May 2010, although we show 

that at UHF this was driven by uncertainty in arbitrage capacity. Conceptually, uncertainty in 

capacity could correlate with a UHF measure of fragmentation (which we do not test). |Crowd|, 

therefore, represents a natural UHF measure of this delinking since fundamental value for a 

stock is akin to NAV for a fund. Accordingly, we suggest ETP market makers use |Crowd| to 

adjust the swing factor applied to the NAV to manage demand and supply on the ETP shares 

during crowded markets. ETP managers typically apply pre-set swing factors, but |Crowd| 

allows for more precise calculations at UHF of a dynamic partial swing factor that adjusts the 

NAV based on the degree of crowdedness in the ETP’s underlying stocks. This would pass the 

cost of crowdedness back to traders engaged in liquidity spirals, allowing for better quotations 

and pricing quality, as long-term fundamental traders would be shielded, at least partially, from 

temporary mispricing. Moreover, since the same logic applies to individual stocks, we 

generically propose publishing the level of crowdedness of stocks and ETPs alongside their 

prices. This would offer market participants and regulators increased awareness and 

transparency about the extent of mispricing, leading to improved quoting, pricing, trading, 

monitoring, and regulatory investigations of crashes, squeezes, and extreme events in UHF 

trading. Disclosing the degree of crowdedness should enhance the orderliness and stability of 

markets by reducing the toxicity of order flow, among other benefits. This is because liquidity 

providers would be better informed of the likely loss they may incur at different levels of 

uncertainty in arbitrage capacity. 

 

6. Summary and conclusion 

This paper proposes “reflexive crowdedness” as a mechanism through which order flow 

becomes toxic and develops an empirical framework for examining this mechanism in high-

frequency trading (HFT). Our results show that uncertainty in agents’ arbitrage capacity leads 
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to significant mispricing in HFT. This mispricing induces noise in trading signals and triggers 

speculative trading. Clustering in arbitrage capacity coupled with reflexive feedback loops 

further amplify and propagate this noise through the price components that high-speed traders 

rely on as trading signals. The amplified noise, facilitated by high-speed directional traders like 

opportunistic algos, accelerates speculative trading and pushes the market into a liquidity spiral 

that leads to extreme phenomena such as flash crashes and spikes. 

Our results on Dow 30 stock trades show that the surprise in arbitrage capacity (SAC) of a 

trade has substantial explanatory power on subsequent mispricing (R2 of 31% to 38%) and 

mispricing risk. We detect crowdedness as asymmetries in the relationship between subsequent 

mispricing and SAC. We find that the market misprices securities more significantly and with 

greater uncertainty under faster-than-expected conditions for lower liquidity stocks on days of 

bad news compared to other days, and for algorithmic trades as opposed to institutional and 

retail trades. During days of good news, mispricing is greater in slow markets, distinguishing 

crowdedness from congestion, which only occurs in fast markets. Uncertainty in mispricing 

due to crowdedness persists over the next 150 transactions, taking a median time of 0.23 min 

to resolve. Thus, the effects of crowdedness extend beyond algorithmic timescales. We 

estimate that crowdedness imposes substantial liquidity costs on traders amounting to as much 

as 2.21% of the trade value, or higher for small denominated and penny stocks.  

We formulate a new measure of crowdedness at the trade level and find that it significantly 

predicts UHF extreme price events, price runs, demand for immediacy, bid-ask spreads, and 

algorithmic and institutional trading over the next 150 transactions. Further analysis reveals 

that an interval-based version of this measure is a stronger and more reliable predictor of flash 

crashes and spikes than VPIN and price volatility. While it interacts with VPIN and algorithmic 

trading, our results indicate that crowdedness is the primary driver and a trigger for speculative 

algorithmic trading during extreme events. Additionally, our findings show that institutional 
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investors withdraw from crowded markets due to anticipated increases in the sensitivity of 

trading costs to crowdedness, further contributing to market instability during extreme events.  

The general implication of our results is that market instability at UHFs is not solely 

influenced by the presence, speed, or capital of agents but rather by the rate at which the market 

misprices fundamentals in liquidity costs for every unit surprise in the arbitrage capacity of 

agents. We recommend publishing crowdedness metrices alongside prices to inform traders of 

the liquidity costs they would likely incur at different levels of uncertainty in arbitrage capacity. 

Investors can capitalise on the crowdedness premium through targeted strategies, while market 

makers should reflect crowdedness costs in the spread. Exchange Traded Product managers 

can design partial swing factors based on crowdedness, and market operators can implement a 

hybrid trading mechanism that switches from continuous to batch trading along with a circuit 

breaker tier system based on crowdedness and price volatility. We propose our measure of 

crowdedness as a UHF indicator of order flow toxicity, market instability, and market quality. 
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Table 1 Descriptive statistics, estimation results, and mispricing graphs 
This table has two panels and two graphs. Panel A presents descriptive statistics of returns (R), quantity (Q), duration (D), and the average overreaction and underreaction in the next 5, 15, and 25 

transactions (AOU5, AOU15, AOU25) for the full sample and for algorithmic, retail, and institutional trades separately. Panel B presents the estimation results of Equations (2)-(6) and the hazard 

function (Equation B.2.1 in online Appendix B). Graph 1 plots AOU15 over levels of the Surprise in Arbitrage Capacity (SAC). Graph 2 plots the standard deviation of mispricing over different 

numbers of prospective transactions. The inset table in Graph 2 presents the standard deviation (std) of mispricing in bins of prospective transactions, F-test values on the incremental dissipation 

in the square of std from one bin to the next from left to right, its p-value (p), and the average (a) and median (m) times in minutes of the transaction bins. 

Panel A R Q D AOU5 AOU15 AOU25  R Q D AOU5 AOU15 AOU25 

Avg. Full Sample 0.00 205.8 0.90 0.00 0.00 0.00 Algorithmic  0.00 128.66 0.12 0.00 0.00 0.00 

Min. 230,084,293 -52.66 1 0.00 -55.66 -11.32 -9.02 168,237,635  -230.21 1 0.00 -30.46 -39.90 -39.13 

Max.  52.65 88000 4500 47.05 8.35 6.40 (73.12%) 195.57 1378 0.65 92.11 78.73 55.31 

Std.  0.17 538.94 2.34 1.03 0.82 0.74  0.08 168.73 0.17 1.53 1.64 0.97 

Avg. Retail  

54,264,480  

(23.58%) 

0.00 155.28 2.37 0.00 0.00 0.00 Institutional  0.00 2377.23 0.47 0.00 0.00 0.00 

Min. -37.02 1 0.65 -34.07 -27.33 -22.75 7,582,178  -22.75 796 0.00 -26.43 -30.16 -11.62 

Max. 36.08 2789 7100 43.50 28.85 24.76 (3.30%) 24.76 88100 6900 3.45 32.35 20.89 

Std. 0.07 180.34 4.16 0.97 0.64 0.48  0.05 2513.48 3.62 0.75 0.64 0.39 
 

Panel B θ1 θ2 θ3 φ0 φ1 φ2 φ3 ρ σε2 σξ2 ω α β γ1 γ2 γ3 g1 g2 s1 s2 

Avg. 0.0076 0.0054 0.0054 0.0094 -0.004 -0.003 -0.0031 0.34 0.32 0.04 0.0263 0.269 0.7243 0.9529 3.6529 0.3641 3.17 1.87 0.89 2.97 

Med. 0.0043 0.0022 0.0036 0.0078 -0.0022 -0.0011 -0.0018 0.34 0.14 0.02 0.0216 0.2404 0.7529 0.9231 2.7225 0.3678 2.02 1.16 0.99 3.23 

S.error 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00 0.01 0.08 0.0002 0.0019 0.0007 0.0123 0.027 0.0022 0.06 0.08 0.02 0.19 

Std. 0.0143 0.0097 0.0061 0.0053 0.0086 0.0057 0.0054 0.14 0.60 0.07 0.0162 0.1103 0.1103 0.0564 2.9563 0.0564 3.43 2.16 0.23 0.92 
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Graph 1: Average Overreaction and Underreaction Over Next 
15 Trades (AOU15)
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Table 2 Mispricing in quartiles of AOU15 against surprise in arbitrage capacity 
This table has six panels separated by full horizontal lines. The top three panels present slope estimates (t-stats in parenthesis) 

and R2 of regressions of mispricing on the surprise in arbitrage capacity (SAC) in quadrants Q1-Q4 of Graph 1 in Table 1. This 

is presented for All trades (top panel) and for trades of Low liquidity and High Liquidity stocks (second two panels). The 

bottom three panels present values of a t-test on the difference in slopes across quadrants as tests of asymmetries (p-values in 

parenthesis). The critical values of the t-stats at 10%, 5%, and 1% are 1.29, 1.66, and 2.36, respectively. 

 

  Full Sample News Agent Type 

  Quadrant  All Good No Bad Algorithmic Institutional Retail 

A
ll

 

Q1 0.0522 0.0405 0.0531 0.0738 0.0637 0.0411 0.0517 
 (87.19) (32.99) (52.34) (19.14) (91.50) (83.84) (68.23) 

Q2 -0.0443 -0.0517 -0.0389 -0.0537 -0.0596 -0.0227 -0.0462 
 (-81.60) (-90.88) (-92.08) (-84.09) (-92.27) (-55.90) (-71.63) 

Q3 0.0456 0.0544 0.0397 0.0573 0.0616 0.0276 0.0495 
 (71.50) (84.41) (87.16) (80.06) (81.57) (52.32) (62.61) 

Q4 -0.0574 -0.0481 -0.0593 -0.0742 -0.0709 -0.0428 -0.0586 

  (-76.62) (-25.77) (-46.46) (-19.21) (-60.44) (-71.24) (-68.18) 

  R2 0.3131 0.3519 0.3016 0.3992 0.4625 0.4264 0.4570 

L
o

w
 L

iq
u

id
it

y
 

Q1 0.1035 0.0658 0.1057 0.1342 0.1393 0.0641 0.1072 
 (29.76) (26.58) (29.79) (28.81) (36.33) (36.30) (16.65) 

Q2 -0.0516 -0.0796 -0.0456 -0.0743 -0.0643 -0.0368 -0.0538 
 (-85.38) (-71.17) (-59.61) (-67.13) (-79.01) (-32.50) (-84.64) 

Q3 0.0554 0.0766 0.0472 0.0767 0.0813 0.0221 0.0628 
 (83.40) (71.06) (54.56) (62.65) (82.59) (65.56) (82.04) 

Q4 -0.1215 -0.0683 -0.1317 -0.1509 -0.1531 -0.0990 -0.1125 

  (-39.91) (-28.21) (-27.25) (-25.14) (-44.62) (-44.59) (-30.52) 

H
ig

h
 L

iq
u

id
it

y
 

Q1 -0.0683 -0.0352 -0.0786 -0.0824 -0.0946 -0.0933 -0.0170 
 (-30.01) (-15.48) (-27.25) (-23.89) (-29.45) (-18.09) (-42.48) 

Q2 0.0313 0.0242 0.0280 0.0369 0.0333 0.0344 0.0261 
 (50.26) (42.31) (34.08) (24.94) (73.25) (7.56) (69.97) 

Q3 -0.0374 -0.0244 -0.0291 -0.0325 -0.0674 -0.0072 -0.0377 
 (-50.07) (-41.53) (31.22) (-16.71) (-59.32) (-8.01) (-32.88) 

Q4 0.0797 0.0471 0.0893 0.0809 0.0202 0.0201 0.0182 

  (35.46) (24.05) (20.87) (22.24) (24.34) (24.26) (57.78) 

  R2 0.3828 0.4089 0.3747 0.4560 0.4630 0.4619 0.4603 

A
ll

 

Q1 vs Q4 -3.90 -2.46 -2.71 -0.05 -3.86 -1.55 -4.24 
 (0.00) (0.01) (0.00) (0.48) (0.00) (0.06) (0.00) 

Q2 vs Q3 -1.07 -2.20 -0.92 -2.67 -1.43 -5.20 -2.33 
 (0.14) (0.01) (0.18) (0.00) (0.08) (0.00) (0.01) 

Q1 vs Q2 6.87 -6.26 9.87 4.46 3.05 20.50 3.96 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Q4 vs Q3 8.53 -2.50 11.31 3.67 4.82 13.50 5.49 

  (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

L
o

w
 L

iq
u

id
it

y
 

Q1 vs Q4 -2.76 -0.51 -3.10 -1.57 -1.90 -8.76 -0.52 
 (0.00) (0.30) (0.00) (0.06) (0.03) (0.00) (0.30) 

Q2 vs Q3 -2.95 1.37 -1.00 -1.00 -9.45 10.01 -6.39 
 (0.00) (0.09) (0.16) (0.16) (0.00) (0.00) (0.00) 

Q1 vs Q2 12.71 -3.85 13.94 10.38 16.13 9.42 7.55 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Q4 vs Q3 17.83 -2.38 14.82 10.27 16.26 30.08 11.17 

  (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

H
ig

h
 L

iq
u

id
it

y
 

Q1 vs Q4 -0.60 1.03 -0.98 -1.02 -7.80 -4.16 -0.37 
 (0.28) (0.15) (0.16) (0.15) (0.00) (0.00) (0.35) 

Q2 vs Q3 0.92 0.96 -0.34 -1.16 5.04 -1.80 0.91 
 (0.18) (0.17) (0.37) (0.12) (0.00) (0.04) (0.18) 

Q1 vs Q2 5.13 -8.74 2.58 2.92 3.72 2.75 8.10 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Q4 vs Q3 3.56 -5.14 2.69 2.02 18.64 7.40 11.72 

  (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) 



45 
 

Table 3 Asymmetries in mispricing uncertainty  
This table presents values of an F-test (p-value in parentheses) in SAC bins on the variance ratio between positive and negative 

SAC (Panel A), low and high liquidity stocks (Panel B), and types of news and agent (Panel C). 

    

Panel A        

 |SAC| All Good News No News Bad News Algorithmic Institutional Retail 

A
ll

 

1-3 21.98 (0.00) 6.42 (0.00) 19.88 (0.00) 7.12 (0.00) 9.27 (0.00) 0.99 (0.59) 3.91 (0.00) 

3-5 14.91 (0.00) 4.22 (0.00) 12.20 (0.00) 6.13 (0.00) 7.86 (0.00) 1.16 (0.01) 5.38 (0.00) 

5-7 8.11 (0.00) 1.82 (0.00) 6.57 (0.00) 3.31 (0.00) 6.95 (0.00) 1.11 (0.05) 5.96 (0.00) 

7-9 4.27 (0.00) 0.93 (0.83) 3.52 (0.00) 1.86 (0.00) 4.34 (0.00) 1.15 (0.01) 4.30 (0.00) 

9-11 2.45 (0.00) 0.78 (0.99) 1.95 (0.00) 1.55 (0.00) 2.87 (0.00) 0.50 (1.00) 2.32 (0.00) 

11-13 1.67 (0.00) 0.80 (0.93) 1.40 (0.00) 1.26 (0.11) 1.61 (0.00) 1.17 (0.01) 1.56 (0.00) 

13-15 1.07 (0.19) 0.67 (0.98) 1.02 (0.39) 0.93 (0.60) 1.48 (0.00) 0.71 (1.00) 1.14 (0.02) 

L
o

w
 L

iq
u
id

it
y
 1-3 22.55 (0.00) 6.23 (0.00) 20.52 (0.00) 6.99 (0.00) 14.71 (0.00) 0.84 (1.00) 4.35 (0.00) 

3-5 16.15 (0.00) 4.20 (0.00) 13.42 (0.00) 6.26 (0.00) 9.50 (0.00) 1.25 (0.00) 5.87 (0.00) 

5-7 9.71 (0.00) 1.88 (0.00) 8.03 (0.00) 3.37 (0.00) 8.28 (0.00) 0.84 (1.00) 7.53 (0.00) 

7-9 5.13 (0.00) 0.97 (0.60) 4.21 (0.00) 1.92 (0.00) 4.81 (0.00) 1.15 (0.01) 5.53 (0.00) 

9-11 2.84 (0.00) 0.73 (0.99) 2.34 (0.00) 1.65 (0.00) 4.05 (0.00) 0.99 (0.56) 2.93 (0.00) 

11-13 1.95 (0.00) 0.83 (0.81) 1.73 (0.00) 1.36 (0.07) 1.92 (0.00) 1.12 (0.04) 2.04 (0.00) 

13-15 1.28 (0.01) 0.77 (0.84) 1.28 (0.02) 0.95 (0.55) 1.76 (0.00) 0.68 (1.00) 1.32 (0.00) 

H
ig

h
 L

iq
u
id

it
y
 1-3 17.17 (0.00) 12.63 (0.00) 14.84 (0.00) 4.09 (0.00) 9.93 (0.00) 0.54 (1.00) 4.74 (0.00) 

3-5 11.09 (0.00) 6.04 (0.00) 8.80 (0.00) 0.61 (0.95) 6.37 (0.00) 1.08 (0.11) 6.59 (0.00) 

5-7 4.23 (0.00) 2.08 (0.00) 3.59 (0.00) 0.36 (1.00) 4.36 (0.00) 1.29 (0.00) 4.09 (0.00) 
7-9 2.17 (0.00) 1.18 (0.07) 1.93 (0.00) 0.21 (1.00) 3.25 (0.00) 1.16 (0.01) 3.13 (0.00) 

9-11 1.51 (0.00) 1.79 (0.00) 1.22 (0.01) 0.14 (1.00) 1.65 (0.00) 0.97 (0.71) 1.75 (0.00) 

11-13 1.25 (0.01) 1.50 (0.02) 1.04 (0.37) 0.12 (1.00) 1.22 (0.00) 1.23 (0.00) 1.18 (0.00) 
13-15 0.84 (0.91) 0.33 (1.00) 0.92 (0.72) 0.34 (0.79) 0.93 (0.88) 0.17 (1.00) 1.24 (0.00) 

 
 Panel B Low versus High Liquidity Stocks 

 SAC All Good News No News Bad News Algorithmic Institutional Retail 

-15--13 2.94 (0.00) 2.94 (0.00) 3.25 (0.00) 3.14 (0.02) 5.18 (0.00) 1.39 (0.00) 5.56 (0.00) 

-13--11 2.17 (0.00) 2.73 (0.00) 2.51 (0.00) 1.43 (0.22) 4.57 (0.00) 1.19 (0.00) 2.02 (0.00) 
-11--9 1.59 (0.00) 3.08 (0.00) 1.60 (0.00) 1.96 (0.00) 3.33 (0.00) 1.11 (0.05) 2.52 (0.00) 

-9--7 1.60 (0.00) 2.61 (0.00) 1.66 (0.00) 1.54 (0.00) 3.34 (0.00) 1.11 (0.05) 1.27 (0.00) 

-7--5 1.49 (0.00) 2.08 (0.00) 1.52 (0.00) 1.06 (0.19) 3.27 (0.00) 1.09 (0.09) 4.29 (0.00) 
-5--3 2.27 (0.00) 2.69 (0.00) 2.23 (0.00) 1.00 (0.53) 6.38 (0.00) 2.13 (0.00) 1.63 (0.00) 

-3--1 3.04 (0.00) 4.07 (0.00) 2.95 (0.00) 1.43 (0.00) 8.51 (0.00) 2.84 (0.00) 1.90 (0.00) 

-1-1 4.95 (0.00) 6.35 (0.00) 4.41 (0.00) 3.98 (0.00) 5.09 (0.00) 1.70 (0.00) 2.86 (0.00) 

1-3 4.00 (0.00) 2.00 (0.00) 4.11 (0.00) 2.44 (0.00) 7.33 (0.00) 2.60 (0.00) 2.95 (0.00) 

3-5 3.32 (0.00) 1.86 (0.00) 3.42 (0.00) 10.20 (0.00) 5.15 (0.00) 1.89 (0.00) 2.27 (0.00) 
5-7 3.43 (0.00) 1.88 (0.00) 3.39 (0.00) 9.80 (0.00) 5.70 (0.00) 2.01 (0.00) 1.92 (0.00) 

7-9 3.78 (0.00) 2.15 (0.00) 3.67 (0.00) 13.97 (0.00) 7.45 (0.00) 1.96 (0.00) 1.27 (0.00) 

9-11 2.99 (0.00) 1.24 (0.16) 3.05 (0.00) 23.59 (0.00) 10.34 (0.00) 1.86 (0.00) 2.59 (0.00) 
11-13 3.38 (0.00) 1.51 (0.08) 4.17 (0.00) 15.97 (0.00) 14.72 (0.00) 2.06 (0.00) 2.45 (0.00) 

13-15 4.50 (0.00) 6.96 (0.00) 4.55 (0.00) 8.70 (0.05) 15.68 (0.00) 1.48 (0.00) 4.08 (0.00) 

 
 Panel C Type of News Type of Agent 

SAC Bad/Good  Bad/No Good/No Algo/Institutional Algo/Retail Retail/Institutional 

-15--13 1.37 (0.00) 1.42 (0.00) 1.04 (0.27) 1.48 (0.00) 7.15 (0.00) 1.42 (0.00) 
-13--11 1.27 (0.00) 1.80 (0.00) 1.42 (0.00) 1.61 (0.00) 2.37 (0.00) 1.74 (0.00) 

-11--9 1.25 (0.00) 2.43 (0.00) 1.95 (0.00) 2.87 (0.00) 4.46 (0.00) 1.85 (0.00) 
-9--7 1.20 (0.00) 2.76 (0.00) 2.31 (0.00) 3.34 (0.00) 5.05 (0.00) 1.58 (0.00) 

-7--5 1.29 (0.00) 2.77 (0.00) 2.15 (0.00) 2.95 (0.00) 7.80 (0.00) 0.86 (0.99) 

-5--3 1.32 (0.00) 2.68 (0.00) 2.03 (0.00) 3.86 (0.00) 5.80 (0.00) 1.66 (0.00) 
-3--1 1.24 (0.00) 2.49 (0.00) 2.01 (0.00) 4.27 (0.00) 6.54 (0.00) 1.29 (0.00) 

-1-1 1.35 (0.00) 2.67 (0.00) 1.98 (0.00) 3.20 (0.00) 7.26 (0.00) 0.70 (1.00) 

1-3 1.37 (0.00) 0.89 (1.00) 0.65 (1.00) 1.09 (0.08) 2.78 (0.00) 1.27 (0.00) 
3-5 1.92 (0.00) 1.34 (0.00) 0.70 (1.00) 3.27 (0.00) 4.60 (0.00) 1.07 (0.14) 

5-7 2.34 (0.00) 1.40 (0.00) 0.60 (1.00) 6.17 (0.00) 7.34 (0.00) 1.95 (0.00) 

7-9 2.40 (0.00) 1.46 (0.00) 0.61 (1.00) 7.01 (0.00) 6.79 (0.00) 1.88 (0.00) 
9-11 2.48 (0.00) 1.94 (0.00) 0.78 (0.98) 6.23 (0.00) 8.30 (0.00) 2.93 (0.00) 

11-13 1.99 (0.00) 1.61 (0.01) 0.81 (0.90) 7.03 (0.00) 12.95 (0.00) 1.60 (0.00) 

13-15 1.88 (0.01) 1.28 (0.13) 0.68 (0.97) 7.29 (0.00) 11.00 (0.00) 1.72 (0.00) 
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Table 4 The predictive power of the crowdedness of a trade  
This table reports estimation results of the regression 𝑄𝑖+𝑠 = 𝑐 + 𝑎|𝐶𝑟𝑜𝑤𝑑| + 𝐶𝑉𝑖 + 𝑢𝑖 + 𝑒𝑖, where 𝑄 = (UHF, Algo., runs, 

institutional, trade/order ratio, spread)’,  CV = (duration, volume, order count, sum of volume at best bid and best ask)' are 

control variables, 𝑢 are company fixed effects, and e are errors. The estimation is over 𝑠 = (5, 25, 50, 100, 150)′ prospective 

transactions over the full sample. Results on control variables and fixed effects are not reported for brevity. Three separate 

regressions for each Q are reported in each panel separated by a full horizontal line. The first two rows in each panel report 

regression results with |Crowd| as an independent variable. The next 4 rows report regression results with signed Crowd (+ and 

–) with t(+)-|-| being a t-test (p-value in parentheses) of the difference in coefficients between Crowd + and Crowd -. The next 4 

rows are results of regressions that dissect the coefficient 𝑎 ≔ (1 − 𝐺)𝑎− + 𝐺𝑎+ with a smooth transition function 𝐺 =

(1 + 𝑒𝑥𝑝(−𝑔(|𝐶𝑟𝑜𝑤𝑑| − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑))
−1

, where 𝑎− is the coefficient when |𝐶𝑟𝑜𝑤𝑑| < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑎+ is the coefficient 

when |𝐶𝑟𝑜𝑤𝑑| ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The parameters: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑎−, 𝑎+, and 𝑔, are estimated with maximum likelihood assuming 

Normal errors. R2 is reported for each regression. t-stats critical values are 1.29, 1.66, and 2.36 at 10%, 5%, and 1%. 
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0.6542 0.5880 0.4793 0.4255 0.3962 
 (32.86) (9.48) (8.20) (5.12) (3.76) (66.23) (17.56) (9.89) (5.51) (3.87) 
R2 0.1869 0.1163 0.0745 0.0614 0.0525 0.2363 0.1297 0.1135 0.0921 0.0785 

Crowd+ 0.3266 0.2980 0.2759 0.2530 0.2415 0.9274 0.6332 0.5073 0.4226 0.3837 

 (24.26) (9.16) (5.86) (3.67) (2.80) (90.38) (19.17) (10.15) (5.45) (3.78) 

Crowd- -0.3278 -0.3274 -0.2981 -0.2728 -0.2457 -0.5734 -0.5428 -0.4963 -0.4449 -0.4160 
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t(+)-|-| -0.04 -0.45 -0.23 -0.14 -0.02 14.82 1.35 0.11 -0.14 -0.16 

 (0.48) (0.33) (0.41) (0.44) (0.49) (0.00) (0.09) (0.46) (0.44) (0.44) 

Threshold 0.0633 0.0548 0.0540 0.0521 0.0496 0.0628 0.0545 0.0511 0.0512 0.0465 
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in

g
 (

%
 o

f 
tr

ad
es

) 

(11.05) (11.65) (7.68) (4.61) (3.31) 

R2 0.1794 0.1261 0.1231 0.1094 0.0973 0.1194 0.0930 0.0825 0.0643 0.0580 

Crowd+ 0.9179 0.3515 0.2940 0.2706 0.2701 0.1619 0.2521 0.2450 0.2281 0.2160 

 (28.54) (4.07) (2.15) (1.20) (0.87) (17.94) (10.98) (6.95) (4.10) (2.93) 

Crowd- -0.6408 -0.4206 -0.3849 -0.3753 -0.3796 -0.2039 -0.2909 -0.3052 -0.2932 -0.2801 

 (-19.34) (-4.73) (-2.73) (-1.61) (-1.19) (-4.17) (-12.31) (-8.41) (-5.12) (-3.69) 

R2 0.2031 0.1321 0.1276 0.1199 0.0977 0.1584 0.1084 0.1009 0.0951 0.0820 

t(+)-|-| 4.24 -0.39 -0.33 -0.23 -0.17 -6.72 -0.83 -0.84 -0.58 -0.43 

 (0.00) (0.35) (0.37) (0.41) (0.43) (0.00) (0.20) (0.20) (0.28) (0.33) 

Threshold 0.0635 0.0514 0.0476 0.0501 0.0479 0.0627 0.0526 0.0498 0.0490 0.0457 
 (1.66) (2.03) (2.48) (3.23) (4.05) (1.94) (2.10) (2.45) (3.16) (3.97) 

𝑎− 1.3639 0.6756 0.5940 0.5651 0.5685 0.5620 0.4750 0.4873 0.4686 0.4480 
 (41.90) (7.70) (4.27) (2.46) (1.80) (19.34) (20.38) (13.44) (8.06) (5.79) 

𝑎+ 0.1948 0.0965 0.0849 0.0807 0.0812 0.0803 0.0679 0.0696 0.0669 0.0640 
 (5.99) (1.10) (0.61) (0.35) (0.26) (2.76) (2.91) (1.92) (1.15) (0.83) 

g 3.3246 2.8067 2.2790 2.0867 2.0452 1.1852 0.9873 0.9218 0.8924 0.6557 

(19.95) (15.13) (13.28) (12.47) (11.78) (8.49) (7.26) (6.86) (5.58) (5.32) 

|Crowd| 

T
ra

d
e-

to
-o

rd
er

 r
at

io
 (

%
 o

f 
tr

ad
es

/o
rd

er
s)

 

0.2657 0.1870 0.1732 0.1663 0.1624 

B
id

-a
sk

 s
p

re
ad

 (
$

) 

0.1537 0.1613 0.1690 0.1740 0.1778 
 (51.04) (8.66) (4.39) (2.29) (1.54) (38.24) (13.00) (47.64) (51.14) (53.52) 

R2 0.3015 0.2612 0.2423 0.2279 0.2032 0.3209 0.2513 0.1961 0.1697 0.1560 

Crowd+ 0.1719 0.1075 0.1000 0.0980 0.0987 0.1158 0.1419 0.1471 0.1519 0.1557 

 (33.69) (5.08) (2.59) (1.38) (0.93) (43.67) (11.62) (6.29) (3.38) (2.37) 

Crowd- -0.3595 -0.2666 -0.2464 -0.2346 -0.2261 -0.1742 -0.1808 -0.1850 -0.1906 -0.1944 

 (-68.39) (-12.24) (-6.19) (-3.20) (-2.14) (-63.79) (-14.37) (-7.67) (-4.12) (-2.87) 

R2 0.3812 0.2724 0.2537 0.2302 0.2153 0.3578 0.2773 0.2037 0.1744 0.1625 

t(+)-|-| -18.10 -3.71 -1.87 -0.94 -0.60 -10.85 -1.57 -0.80 -0.42 -0.29 

 (0.00) (0.00) (0.03) (0.17) (0.27) (0.00) (0.06) (0.21) (0.34) (0.39) 
Threshold 0.0632 0.0554 0.0533 0.0527 0.0512 0.0632 0.0536 0.0526 0.0502 0.0495 
 (1.84) (2.20) (2.36) (3.12) (4.00) (1.97) (2.20) (2.46) (3.06) (4.06) 

𝑎− 0.4650 0.3273 0.3031 0.2911 0.2842 0.2690 0.2823 0.2957 0.3046 0.3112 
 (89.32) (15.15) (7.68) (4.00) (2.69) (66.93) (22.74) (83.37) (89.50) (93.66) 

𝑎+ 0.0664 0.0468 0.0433 0.0416 0.0406 0.0384 0.0403 0.0422 0.0435 0.0445 
 (12.76) (2.16) (1.10) (0.57) (0.38) (9.56) (3.25) (11.91) (12.79) (13.38) 

g 2.0582 1.7567 1.6693 1.4008 1.3770 4.3385 3.4929 3.0794 2.8652 2.8081 

(38.59) (35.39) (20.63) (9.64) (6.34) (29.89) (25.78) (18.57) (16.71) (16.40) 
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Table 5 The predictive power of crowdedness in interval measures 
This table presents estimation results of: 𝑈𝐻𝐹𝑡 = 𝑐 + 𝑎𝑉𝑃𝐼𝑁𝑡 + 𝛽 ∑ |𝐶𝑟𝑜𝑤𝑑|𝑡𝑟𝑎𝑑𝑒𝑠𝑡

+ 𝛾𝐴𝑙𝑔𝑜𝑡 + 𝛿𝐼𝑛𝑠𝑡𝑡 + 𝜺(𝐴𝑙𝑔𝑜𝑡 ×  ∑ |𝐶𝑟𝑜𝑤𝑑|𝑡𝑟𝑎𝑑𝑒𝑠𝑡
, 𝐴𝑙𝑔𝑜𝑡 ×  ∑ |𝐶𝑟𝑜𝑤𝑑| 𝑡𝑟𝑎𝑑𝑒𝑠𝑡

)′ + 𝜻𝐶𝑉𝑡 + 𝑢𝑡 + 𝑒𝑡. 

“Level” and “Lag” in the column headings refer to contemporaneous and t+1 forecast estimates, respectively. t indexes the time 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (5′′, 30′′, 1′, 5′, 30′, 60′)′; UHF, Algo., and Inst. are 

the numbers of trades classified as UHF events, algorithmic, or institutional per stock per interval; CV = (conditional variance of 𝛥𝑝𝑡 (C.Var.), bid-ask spread, trade/order ratio, duration, volume)′ 
is a set of control variables averaged over interval t (only C.Var. is reported for brevity); 𝑢𝑡 are fixed effects. The first column in each panel is an all-parameter estimation, with (t-stats; variance 

inflation factor) in parentheses. The second column presents a LASSO estimation (Hastie et al., 2009) using the BIC criteria for variable selection and 70% of sample for training, with (t-stats) in 

parentheses. The bottom three rows in each panel report the R2 and the estimates of the overall indirect (Ind.) impact of Crowd on UHF (Judd and Kenny, 1981) and separately for VPIN (V) and 

for Algo. (A) (Sobel, 1982). Parentheses in the second column next to Ind. values and below V | A values contain (2.5%; 97.5%) confidence intervals based on 5000 bootstraps.  

 
  5 Level LASSO 5 Lag LASSO 30 Level LASSO 30 Lag LASSO 60 Level LASSO 60 Lag LASSO 

S
ec

o
n
d

s 
′′

 

VPIN 0.2266 0.2173 0.2079  0.0243 0.0355 0.1120  0.0519  0.1763  
 

(13.73; 2.9) (10.16) (12.68; 1.4)  (0.93; 3.1) (7.75) (4.28; 2.3)  (1.67; 4.1)  (5.68; 4.9)  

|Crowd| 0.1532 0.0609 0.1808 0.3289 0.2034 0.2099 0.0645 0.1766 0.2305 0.3950 0.2912 0.2843  
(10.38; 1.2) (87.22) (12.32; 1.2) (16.48) (7.65; 1.4) (61.39) (2.94; 1.3) (7.92) (7.20; 1.5) (46.09) (1.92; 1.4) (7.77) 

Algo. 0.0813  0.0857  -0.0459  -0.0627  -0.0529  -0.2456  
 

(7.32; 1.5)  (7.55; 1.4)  (-2.52; 1.7)  (-3.77; 1.9)  (-3.23; 1.8)  (-7.99; 2.1)  

|Crowd|xAlgo 0.0310 0.1037 0.0028  0.0150 0.0200 0.0231  0.0104 0.1846 0.0104  

(10.20; 1.5) (6.53) (10.59; 1.5)  (10.99; 2.4) (12.48) (15.36; 2.4)  (13.42; 7.0) (19.89) (14.34; 7.0)  

|Crowd|xVPIN 0.0832 0.1237 0.0410  0.0375 0.0489 0.0690  0.0214 0.2124 0.0314  

(14.36; 1.5) (8.00) (17.12 1.5)  (19.07; 2.4) (25.80) (35.13; 2.4)  (16.62; 7.0) (32.55) (25.91; 7.0)  

Inst. -0.0781  -0.0364  -0.0417  -0.0280  -0.0447  -0.0822  
 

(-1.54; 1.5)  (-1.28; 1.4)  (-0.47; 1.8)  (-0.03; 1.6)  (-0.37; 1.8)  (-0.67; 1.7)  

C. Var. 0.1253 0.1248 0.0762 0.0884 0.0812 0.0809 0.0458 0.0413 0.0615 0.0613 0.0342 0.0462  
(429.3; 1.0) (427.95) (262.6; 1.0) (231.70) (308.5; 1.0) (307.76) (174.2; 2.0) (150.16) (243.3; 1.0) (242.87) (135.2; 1.0) (128.18) 

R2 0.3747 0.2777 0.2111 0.1621 0.4811 0.3021 0.3106 0.2839 0.4254 0.2792 0.3272 0.2222 

Ind. 0.0577 (0.04; 0.08) 0.0428 (0.03; 0.05) 0.3549 (0.15; 0.82) 0.4636 (0.11; 0.87) 0.4533 (0.19; .93) 0.6647 (0.17; 0.95) 

V | A  0.0412 
(0.03; 0.07) 

0.0167 
(0.01; 0.03) 

0.0301 
(0.01; 0.04) 

0.0130 
(0.01; 0.2) 

0.2982 
(0.13; 0.69) 

0.0567 
(0.03 0.17) 

0.4188 
(0.14; 0.69) 

0.0448 
(0.01; 0.18) 

0.3864 
(0.17; 0.88) 

0.0669 
(0.03; 0.15) 

0.6201 
(0.15; 1.36) 

0.0451 
(0.01; 0.17)  

 VPIN 0.0483  0.0741  0.0261  -0.1390  0.0098  -0.1882  

M
in

u
te

s 
′ 

 
(1.19; 4.7)  (1.76; 5.2)  (0.68; 8.2)  (-1.92; 8.3)  (0.87; 9.3)  (-1.15; 9.7)  

|Crowd| 0.7490 0.7239 0.2793 0.2681 0.8041 1.1666 0.4712 0.7092 0.6869 0.4558 0.2495 0.2695  
(10.62; 1.6) (32.72) (4.03; 1.9) (16.09) (11.57; 1.9) (27.63) (6.77; 1.9) (23.50) (6.94; 2.2) (20.07) (2.47; 2.2) (11.39) 

Algo -0.0813  -0.0507  -0.0366  0.1681  -0.0445  -0.2073  
 

(-2.21; 2.1)  (-1.26; 3.1)  (-0.61; 2.2)  (4.44; 3.2)  (-0.78; 2.7)  (-4.35; 4.2)  

|Crowd|xAlgo 0.0073 0.0225 0.0120  0.0051  0.0031  0.0032  0.0005  

(3.25; 3.0) (16.83) (12.43; 3.0)  (10.16; 1.1)  (1.83; 1.1)  (9.73; 1.4)  (15.77; 1.0)  

|Crowd|xVPIN 0.0105 0.0141 0.0242  0.0081  0.0022  0.0051  -0.0001  

(14.00; 3.0) (15.55) (20.69; 3.0)  (10.42; 1.1)  (2.79; 1.1)  (2.15; 1.4)  (-1.14; 1.0)  

Inst -0.1568  -0.3321  -0.2384  -0.2079  -0.6724  -0.4103  
 

(-0.71; 2.4)  (-1.15; 2.0)  (-0.97; 3.5)  (-0.82; 2.0)  (-1.75; 3.7)  (-1.05; 3.2)  

C. Var. 0.0159 0.0159 0.0056  0.0016 0.0017 0.0001  0.0020 0.0019 0.0001  
 

(88.53; 1.0) (88.75) (31.22; 1.0)  (19.69; 1.0) (20.98) (1.41; 1.0)  (5.70; 1.0) (5.60) (0.23; 1.0)  

R2 0.5716 0.3907 0.3492 0.2900 0.4514 0.3095 0.3735 0.2449 0.3839 0.1828 0.2582 0.1781 

Ind. 0.4929 (0.26; 0.95) 0.7452 (0.59; 0.79) 0.2250 (0.14; 0.35) 0.3534 (0.17; 0.73) 0.1065 (0.04; 0.12) 0.1714 (0.07; 0.29) 

V | A  0.3165 

(0.16; 0.61) 

0.1764 

(0.09; 0.34) 

0.5577 

(0.45; 0.70) 

0.1875 

(0.15; 0.23) 

0.1476 

(0.09; 0.23) 

0.0774 

(0.05; 0.12) 

0.2458 

(0.12; 0.62) 

0.1076 

(0.05; 0.36) 

0.0642 

(0.02; 0.08) 

0.0322 

(0.01; 0.04) 

0.0964 

(0.02; 0.15) 

0.0731 

(0.02; 0.18)  
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Figure 1. The anatomy of the 6 May 2010 flash crash 

 

This figure plots nine microstructure measures during 6 May 2010. All observations are averages over one-minute intervals. In the legend, displayed at the top 

left of the figure: UHF is ultra-high frequency events, the light-grey shaded area is the log of aggregate volume (scaled by 1/10 for illustration purposes), VPIN 

is the percentage of trades that are informed, Algo is the percentage of trades that are algorithmic, Sidedness is the proportional trade imbalance, Volatility is 

the standard deviation of price change over the minute intervals, |Crowd| is our measure of crowdedness in $cents per unit of forecasting error in arbitrage 

capacity (SAC), Spread is the implied spread, and Inst. is the percentage of trades that are institutional. The vertical darker-shaded area is the officially reported 

duration of the flash crash. The horizontal black line shows the Crowd threshold for UHF events, estimated at 5 cents (right vertical axis). The horizontal white 

line is the 0 value of the left vertical axis. 
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